Advertisement

Ukrainian Mathematical Journal

, Volume 66, Issue 2, pp 218–231 | Cite as

Semiretractions of Trioids

  • A. V. Zhuchok
Article

We introduce and study the notion of semiretraction of trioid. Examples of left, right, and symmetric semiretractions of trioids are given. We also present new theoretical trioid constructions for which some symmetric semiretractions are characterized.

Keywords

Hopf Algebra Present Section Ukrainian National Academy Dual Method Free Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-L. Loday and M. O. Ronco, “Trialgebras and families of polytopes,” Contemp. Math., 346, 369–398 (2004).MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.-C. Novelli and J.-Y. Thibon, “Construction of dendriform trialgebras,” C. R. Acad. Sci. A, 6, 365–369 (2006).MathSciNetCrossRefGoogle Scholar
  3. 3.
    J.-C. Novelli and J.-Y. Thibon, “Polynomial realizations of some trialgebras,” Formal Power Series and Algebraic Combinatorics. Series Formelles et Combinatoire Algébrique, San Diego, California (2006); arXiv:math/0605061v1.Google Scholar
  4. 4.
    J. M. Casas, “Trialgebras and Leibniz 3-algebras,” Bol. Soc. Mat. Mexic., 12, No. 2, 165–178 (2006).MathSciNetzbMATHGoogle Scholar
  5. 5.
    K. Ebrahimi-Fard, “Loday-type algebras and the Rota–Baxter relation,” Lett. Math. Phys., 61, No. 2, 139–147 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J.-L. Loday, “Dialgebras,” in: Dialgebras and Related Operads, Springer, Berlin (2001), pp. 7–66.Google Scholar
  7. 7.
    A.V. Zhuchok, Dialgebras [in Ukrainian], Institute of Mathematics of the Ukrainian National Academy of Sciences, Kyiv (2011).Google Scholar
  8. 8.
    A.V. Zhuchok, “ Dimonoids,” Alg. Logika, 50, No. 4, 471–496 (2011).MathSciNetGoogle Scholar
  9. 9.
    A.V. Zhuchok, “Free dimonoids,” Ukr. Mat. Zh., 63, No. 2, 165–175 (2011); English translation: Ukr. Math. J., 63, No. 2, 196–208 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A.V. Zhuchok, “Free trioids,” Visn. Kyiv. Nats. Univ., Ser. Fiz.-Mat. Nauk., Issue 4, 23–26 (2010).Google Scholar
  11. 11.
    A.V. Zhuchok, “Tribands of subtrioids,” Proc. Inst. Appl. Math. Mech., 21, 98–106 (2010).MathSciNetzbMATHGoogle Scholar
  12. 12.
    A.V. Zhuchok, “Some congruences on trioids,” Fundam. Prikl. Mat., 17, No. 3, 39–49 (2011/2012).Google Scholar
  13. 13.
    V. M. Usenko, “Semiretractions of monoids,” in: Proc. of the Institute of Applied Mathematics and Mechanics, Ukrainian National Academy of Sciences, 5 (2000), pp. 155–164.Google Scholar
  14. 14.
    A.V. Zhuchok, “Free semigroups of idempotents,” Izv. Gomel. Gos. Univ., 19, No. 4, 55–58 (2003).Google Scholar
  15. 15.
    A.V. Zhuchok, “Semiretractions of free monoids,” in: Proc. of the Institute for Applied Mathematics and Mechanics, Ukrainian National Academy of Sciences, Issue 11 (2005), pp. 81–88.Google Scholar
  16. 16.
    A.V. Zhuchok, “Free normal semigroups of idempotents,” in: Proc. of the Institute of Applied Mathematics and Mechanics of the Ukrainian National Academy of Sciences, Issue 12 (2006), pp. 57–62.Google Scholar
  17. 17.
    V. M. Usenko, “Semiretractions and symmetric images,” Visn. Kyiv. Univ., Ser. Fiz.-Mat. Nauk, Issue 1, 81–85 (2002).Google Scholar
  18. 18.
    A.V. Zhuchok, “Semiretractions of dimonoids,” in: Proc. of the Institute of Applied Mathematics and Mechanics, Ukrainian National Academy of Sciences, 17 (2008), pp. 42–50.Google Scholar
  19. 19.
    A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. 1, American Mathematical Society, Providence (1964); Vol. 2 (1964).Google Scholar
  20. 20.
    E. S. Lyapin, Semigroups [in Russian], Fizmatgiz, Moscow (1960).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. V. Zhuchok
    • 1
  1. 1.Shevchenko Lugansk National UniversityLuganskUkraine

Personalised recommendations