Advertisement

Ukrainian Mathematical Journal

, Volume 66, Issue 2, pp 165–177 | Cite as

Well-Posedness of the Right-Hand Side Identification Problem for a Parabolic Equation

  • A. Ashyralyev
  • A. S. Erdogan
Article

We study the inverse problem of reconstruction of the right-hand side of a parabolic equation with nonlocal conditions. The well-posedness of this problem in Hölder spaces is established.

Keywords

Inverse Problem Parabolic Equation Nonlocal Condition Nonlocal Boundary Condition Nonlocal Initial Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Dehghan, “Determination of a control parameter in the two dimensional diffusion equation,” Appl. Numer. Math., 124, 17–27 (2001).zbMATHGoogle Scholar
  2. 2.
    T. Kimura and T. Suzuki, “A parabolic inverse problem arising in a mathematical model for chromotography,” SIAM J. Appl. Math., 53, No. 6, 1747–1761 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J. R. Cannon, Y. L. Lin, and S. Xu, “Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations,” Inverse Probl., 10, 227–243 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ye Chao-Rong and Sun Zhi-Zhong., “On the stability and convergence of a difference scheme for a one-dimensional parabolic inverse problem,” Appl. Math. Comput., 188, No. 1, 214–225 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    C. Ashyralyyev and M. Dedeturk, “A finite difference method for the inverse elliptic problem with the Dirichlet condition,” Contemp. Anal. Appl. Math., 1, No. 2, 132–155 (2013).zbMATHGoogle Scholar
  6. 6.
    A. Ashyralyev and M. Urun, “Determination of a control parameter for the Schr¨odinger equation,” Contemp. Anal. Appl. Math., 1, No. 2, 156–166 (2013).zbMATHGoogle Scholar
  7. 7.
    D. Orlovsky and S. Piskarev, “The approximation of Bitzadze–Samarsky type inverse problem for elliptic equations with Neumann conditions,” Contemp. Anal. Appl. Math., 1, No. 2, 118–131 (2013).zbMATHGoogle Scholar
  8. 8.
    J. R. Cannon and Yin Hong-Ming, “Numerical solutions of some parabolic inverse problems,” Numer. Meth. Part. D. E., 2, 177–191 (1990).CrossRefGoogle Scholar
  9. 9.
    A. I. Prilepko, D. G. Orlovsky, and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker (1987).Google Scholar
  10. 10.
    V. Isakov, “Inverse problems for partial differential equations,” Appl. Math. Sci., 127 (1998).Google Scholar
  11. 11.
    Yu. Ya. Belov, “Inverse problems for partial differential equations,” J. Inverse Ill-Posed Probl., VSP (2002).Google Scholar
  12. 12.
    A. I. Prilepko and A. B. Kostin, “Some inverse problems for parabolic equations with final and integral observation,” Mat. Sb., 183, No. 4, 49–68 (1992).Google Scholar
  13. 13.
    N. I. Ivanchov, “On the determination of unknown source in the heat equation with nonlocal boundary conditions,” Ukr. Math. J., 47, No. 10, 1647–1652 (1995).MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Di Blasio and A. Lorenzi, “Identification problems for parabolic delay differential equations with measurement on the boundary,” J. Inverse Ill-Posed, 15, No. 7, 709–734 (2007).MathSciNetzbMATHGoogle Scholar
  15. 15.
    M. Dehghan, “A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications,” Numer. Meth. Part. D. E., 22, No. 1, 220–257 (2006).CrossRefzbMATHGoogle Scholar
  16. 16.
    D. Orlovsky and S. Piskarev, “On approximation of inverse problems for abstract elliptic problems,” J. Inverse Ill-Posed., 17, No. 8, 765–782 (2009).MathSciNetzbMATHGoogle Scholar
  17. 17.
    Y.Wang and S. Zheng, “The existence and behavior of solutions for nonlocal boundary problems,” Boundary-Value Problems, 2009, Article ID 484879 (2009), 17 p. (doi:10. 1155/2009/484879).Google Scholar
  18. 18.
    R. P. Agarwal and V. B. Shakhmurov, “Multipoint problems for degenerate abstract differential equations,” Acta Math. Hung., 123, No. 1-2, 65–89 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    F. Zouyed, F. Rebbani, and N. Boussetila, “On a class of multitime evolution equations with nonlocal initial conditions,” Abstr. Appl. Anal., 2007, Article ID 16938 (2007), 26 p. (doi:10. 1155/2007/16938).Google Scholar
  20. 20.
    A. Boucherif and R. Precup, “Semilinear evolution equations with nonlocal initial conditions,” Dynam. Syst. Appl., 16, No. 3, 507–516 (2007).MathSciNetzbMATHGoogle Scholar
  21. 21.
    D. Guidetti, “Backward Euler scheme, singular H¨older norms, and maximal regularity for parabolic difference equations,” Numer. Func. Anal. Opt., 28, No. 3-4, 307–337 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    G. Di Blasio, “Maximal Lp regularity for nonautonomous parabolic equations in extrapolation spaces,” J. Evol. Equat., 6, No. 2, 229–245 (2006).CrossRefzbMATHGoogle Scholar
  23. 23.
    Y. S. Eidelman, “The boundary value problem for differential equations with a parameter,” Differents. Uravn., 14, 1335–1337 (1978).MathSciNetGoogle Scholar
  24. 24.
    A. Ashyralyev, “On the problem of determining the parameter of a parabolic equation,” Ukr. Math. J., 62, No. 9, 1200–1210 (2010).MathSciNetzbMATHGoogle Scholar
  25. 25.
    A. I. Prilepko and A. B. Kostin, “On certain inverse problems for parabolic equations with final and integral observation,” Mat. Sb., 183, No. 4, 49–68 (1992).Google Scholar
  26. 26.
    A. I. Prilepko and I. V. Tikhonov, “Uniqueness of the solution of an inverse problem for an evolution equation and applications to the transfer equation,” Mat. Zametki, 51, No. 2, 77–87 (1992).MathSciNetGoogle Scholar
  27. 27.
    M. Choulli and M. Yamamoto, “Generic well-posedness of a linear inverse parabolic problem with diffusion parameter,” J. Inverse Ill-Posed Probl., 7, No. 3, 241–254 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    M. Choulli and M. Yamamoto, “Generic well-posedness of an inverse parabolic problem-the Hölder-space approach,” Inverse Probl., 12, 195–205 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    S. Saitoh, V. K. Tuan, and M. Yamamoto, “Reverse convolution inequalities and applications to inverse heat source problems,” J. Inequal. Pure Appl. Math., 3 (5), Article 80, 1–11 (2002).Google Scholar
  30. 30.
    V. T. Borukhov and P. N. Vabishchevich, “Numerical solution of the inverse problem of reconstructing a distributed right-hand side of a parabolic equation,” Comput. Phys. Communs, 126, 32–36 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    A. A. Samarskii and P. N. Vabishchevich, “Numerical methods for solving inverse problems of mathematical physics,” Inverse and Ill-Posed Problems, de Gruyter, New York, Berlin (2007).Google Scholar
  32. 32.
    Y. S. Eidelman, “Well-posedness of the direct and inverse problems for a differential equation in a Hilbert space,” Dokl. Akad. Nauk Ukr., 12, 17–21 (1993).MathSciNetGoogle Scholar
  33. 33.
    Y. S. Eidelman, “Direct and inverse problems for a differential equation in a space with a cone,” Dokl. Akad. Nauk, 364, No. 1, 24–26 (1993).MathSciNetGoogle Scholar
  34. 34.
    D. G. Orlovskii, “Weak and strong solutions of inverse problems for differential equations in a Banach space,” Different. Equat., 27, No. 5, 867–874 (1991).MathSciNetGoogle Scholar
  35. 35.
    D. G. Orlovskii, “Solvability of an inverse problem for a parabolic equation in the H¨older class,” Math. Notes, 50, No. 3, 107–112 (1991).MathSciNetCrossRefGoogle Scholar
  36. 36.
    A. Ashyralyev and P. E. Sobolevskii, “Well-posedness of parabolic difference equations,” Oper. Theory: Adv. and Appl., Birkhäuser, Basel, etc. (1994).Google Scholar
  37. 37.
    A. Ashyralyev, “Nonlocal boundary-value problems for PDE: Well-posedness,” Global Analysis and Appl. Math. Book Ser. AIP Conf. Proc., Kenan Tas, et al. (Eds), 729, 325–331 (2004).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Ashyralyev
    • 1
    • 2
  • A. S. Erdogan
    • 1
  1. 1.Fatih UniversityIstanbulTurkey
  2. 2.ITTUAshgabatTurkmenistan

Personalised recommendations