Advertisement

Ukrainian Mathematical Journal

, Volume 66, Issue 1, pp 160–164 | Cite as

On Kropina Change for mth Root Finsler Metrics

  • A. Tayebi
  • T. Tabatabaeifar
  • E. Peyghan
Article

We study the Kropina change for mth root Finsler metrics and establish necessary and sufficient condition under which the Kropina change of an mth root Finsler metric is locally dually flat. Then we prove that the Kropina change of an mth root Finsler metric is locally projectively flat if and only if it is locally Minkowskian.

Keywords

Open Subset Local Coordinate System Finsler Space Invariant Tensor Finsler Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.-I. Amari, “Differential-geometrical methods in statistics,” Springer Lect. Notes Statist., Springer-Verlag (1985).Google Scholar
  2. 2.
    S.-I. Amari and H. Nagaoka, “Methods of Information geometry,” AMS Transl. Math. Monogr., Oxford Univ. Press (2000).Google Scholar
  3. 3.
    V. Balan and N. Brinzei, “Einstein equations for (h, v)-Berwald–Moór relativistic models,” Balkan. J. Geom. Appl., 11, No. 2, 20–26 (2006).zbMATHMathSciNetGoogle Scholar
  4. 4.
    B. Li and Z. Shen, “On projectively flat fourth root metrics,” Can. Math. Bull., 55, 138–145 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    M. Matsumoto, “Theory of Finsler spaces with (α, β) -metric,” Rep. Math. Phys., 31, 43–84 (1992).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Z. Shen, “Riemann–Finsler geometry with applications to information geometry,” Chin. Ann. Math., 27, 73–94 (2006).CrossRefzbMATHGoogle Scholar
  7. 7.
    C. Shibata, “On invariant tensors of β -changes of Finsler metrics,” J. Math. Kyoto Univ., 24, 163–188 (1984).zbMATHMathSciNetGoogle Scholar
  8. 8.
    H. Shimada, “On Finsler spaces with metric \( L=\sqrt[ m]{a_{i_1{i}_2\dots {i}_m}{y}^{i_1}{y}^{i_2}\dots {y}^{i_m}} \),” Tensor (N. S), 33, 365–372 (1979).Google Scholar
  9. 9.
    A. Tayebi and B. Najafi, “On mth root Finsler metrics,” J. Geom. Phys., 61, 1479–1484 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    A. Tayebi and B. Najafi, “On mth root metrics with special curvature properties,” C. R. Acad. Sci. Paris. Ser. I, 349, 691–693 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    A. Tayebi, E. Peyghan, and M. Shahbazi Nia, “On generalized mth root Finsler metrics,” Lin. Algebra Appl., 437, 675–683 (2012).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Tayebi
    • 1
  • T. Tabatabaeifar
    • 1
  • E. Peyghan
    • 2
  1. 1.University of QomQomIran
  2. 2.Arak UniversityArakIran

Personalised recommendations