Advertisement

Ukrainian Mathematical Journal

, Volume 65, Issue 12, pp 1898–1903 | Cite as

On Equivalent Cone Metric Spaces

  • Ö. Ölmez
  • S. Aytar
Brief Communications
  • 71 Downloads

We explore the necessary and sufficient conditions for the two cone metrics to be topologically equivalent.

Keywords

Open Subset Point Theorem Point Theory Cauchy Sequence Contractive Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Abdeljawad, “Completion of TVS-cone metric spaces and some fixed point theorems,” GU J. Sci., 24, No. 2, 235–240 (2011).Google Scholar
  2. 2.
    T. Abdeljawad, “A gap in the paper ‘Note on cone metric fixed point theory and its equivalence’,” Nonlin. Anal., 72, No. 5, 2259–2261 (2010).CrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Abuloha and D. Turkoglu, “Cone metric spaces and fixed point theorems in diametrically contractive mappings,” Acta Math. Sin. (Eng. Ser.), 26, 489–496 (2010).zbMATHMathSciNetGoogle Scholar
  4. 4.
    W. S. Du, “A note on cone metric fixed point theory and its equivalence,” Nonlin. Anal. TMA, 72, 2259–2261 (2010).CrossRefzbMATHGoogle Scholar
  5. 5.
    M. Eisenberg, Topology, Holt, Rinehart & Winston, New York (1974).Google Scholar
  6. 6.
    M. E. Gordji, M. Ramezani, H. Khodaei, and H. Baglani, “Cone normed spaces,” arXiv:0912.0960v1 (2009).Google Scholar
  7. 7.
    L. G. Huang and X. Zhang, “Cone metric spaces and fixed point theorems of contractive mappings,” J. Math. Anal. Appl., 332, 1468–1476 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    E. Karapınar, “Fixed point theorems in cone Banach spaces,” Fixed Point Theory Appl., Article ID 609281 (2009).Google Scholar
  9. 9.
    Sh. Rezapour and R. Hamlbarani, “Some notes on the paper ‘Cone metric spaces and fixed point theorems of contractive mappings’,” J. Math. Anal. Appl., 345, No. 2, 719–724 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Sh. Rezapour, R. H. Haghi, and N. Shahzad, “Some notes on fixed points of quasicontraction maps,” Appl. Math. Lett., 23, 498–502 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    T. K. Samanta, R. Roy, and B. Dinda, “Cone normed linear spaces,” arXiv:1009.2172v1 (2010).Google Scholar
  12. 12.
    D. Turkoglu, M. Abuloha, and T. Abdeljawad, “KKM mappings in cone metric spaces and some fixed point theorems,” Nonlin. Anal., 72, 348–353 (2010).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ö. Ölmez
    • 1
  • S. Aytar
    • 1
  1. 1.Süleyman Demirel UniversityIspartaTurkey

Personalised recommendations