Advertisement

Ukrainian Mathematical Journal

, Volume 65, Issue 12, pp 1845–1861 | Cite as

Common Fixed-Point Theorems and c-distance in Ordered Cone Metric Spaces

  • H. Rahimi
  • G. Soleimani Rad
Article

We present a generalization of several fixed and common fixed point theorems on c -distance in ordered cone metric spaces. In this way, we improve and generalize various results existing in the literature.

Keywords

Point Theorem Nonexpansive Mapping Normal Cone Cauchy Sequence Generalize Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Agarwal, M. Meehan, and D. O’Regan, Fixed Point Theory and Applications, Cambridge Univ. Press (2004).Google Scholar
  2. 2.
    M. Abbas, Y. J. Cho, and T. Nazir, “Common fixed point theorems for four mappings in TVS-valued cone metric spaces,” J. Math. Inequal., 5, 287–299 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    M. Abbas, D. Ilić, and M. A. Khan, “Coupled coincidence point and coupled common fixed point theorems in partially ordered metric spaces with w-distance,” Fixed Point Theory Appl., Article ID 134897 (2010), 11 p.Google Scholar
  4. 4.
    M. Abbas and G. Jungck, “Common fixed point results for noncommuting mappings without continuity in cone metric spaces,” J. Math. Anal. Appl., 341, 416–420 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    M. Abbas, B. E. Rhoades, and T. Nazir, “Common fixed points for four maps in cone metric spaces,” Appl. Math. Comput., 216, 80–86 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    I. Altun, B. Damnjanovíc, and D. Djoríc, “Fixed point and common fixed point theorems on ordered cone metric spaces,” Appl. Math. Lett., 23, 310–316 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    I. Altun and G. Durmaz, “Some fixed point theorems on ordered cone metric spaces,” Rend. Circ. Mat. Palermo, 58, 319–325 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Y. J. Cho, B. E. Rhoades, R. Saadati, B. Samet, and W. Shantawi, “Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type,” Fixed Point Theory Appl., 2012, No. 8 (2012).Google Scholar
  9. 9.
    Y. J. Cho, R. Saadati, and S. H. Wang, “Common fixed point theorems on generalized distance in ordered cone metric spaces,” Comput. Math. Appl., 61, 1254–1260 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    A. S. Cvetkovíc, M. P. Staníc, S. Dimitrijevíc, and S. Simíc, “Common fixed point theorems for four mappings on cone metric type space,” Fixed Point Theory Appl., 15, Article ID 589725 (2011).Google Scholar
  11. 11.
    K. Deimling, Nonlinear Functional Analysis, Springer-Verlag (1985).Google Scholar
  12. 12.
    M. Dordević, D. Dorić, Z. Kadelburg, S. Radenović, and D. Spasić, “Fixed point results under c -distance in tvs-cone metric spaces,” Fixed Point Theory Appl., doi:10.1186/1687-1812-2011-29 (2001).zbMATHGoogle Scholar
  13. 13.
    E. Graily, S. M. Vaezpour, R. Saadati, and Y. J. Cho, “Generalization of fixed point theorems in ordered metric spaces concerning generalized distance,” Fixed Point Theory Appl., 2011, No. 30 (2011).Google Scholar
  14. 14.
    D. Guo, Y. J. Cho, and J. Zhu, Partial Ordering Methods in Nonlinear Problems, Nova Sci. Publ., New York (2004).zbMATHGoogle Scholar
  15. 15.
    G. E. Hardy and T. D. Rogers, “A generalization of a fixed point theorem of Reich,” Can. Math. Bull., 1, No. 6, 201–206 (1973).CrossRefMathSciNetGoogle Scholar
  16. 16.
    J. Garcia-Falset, E. Llorens Fuster, and T. Suzuki, “Fixed point theory for a class of generalized nonexpansive mappings,” J. Math. Anal. Appl., 375, 185–195 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    N. J. Huang, Y. P. Fang, and Y. J. Cho, “Fixed point and coupled fixed point theorems for multi-valued increasing operators in ordered metric spaces,” in: Y. J. Chao, J. K. Kim, and S. M. Kang (editors), Fixed Point Theory Appl., 3, 91–98 (2002).Google Scholar
  18. 18.
    L. G. Huang and X. Zhang, “Cone metric spaces and fixed point theorems of contractive mappings,” J. Math. Anal. Appl., 332, 1467–1475 (2007).CrossRefGoogle Scholar
  19. 19.
    D. Ilić and V. Rakočevíc, “Quasicontraction on a cone metric space,” Appl. Math. Lett., 22, 728–731 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    S. Janković, Z. Kadelburg, and S. Radenović, “On cone metric spaces, a survey,” Nonlin. Anal., 74, 2591–2601 (2011).CrossRefzbMATHGoogle Scholar
  21. 21.
    O. Kada, T. Suzuki, and W. Takahashi, “Nonconvex minimization theorems and fixed point theorems in complete metric spaces,” Math. Jap., 44, 381–391 (1996).zbMATHMathSciNetGoogle Scholar
  22. 22.
    S. K. Mohanta, “Generalized W-distance and a fixed point theorem,” Int. J. Contemp. Math. Sci., 6, No. 18, 853–860 (2011).zbMATHMathSciNetGoogle Scholar
  23. 23.
    R. Saadati, D. O’Regan, S. M. Vaezpour, and J. K. Kim, “Generalized distance and common fixed point theorems in Menger probabilistic metric spaces,” Bull. Iran. Math. Soc., 35, 97–117 (2009).zbMATHMathSciNetGoogle Scholar
  24. 24.
    W. Shatanawi, “Partially ordered cone metric spaces and coupled fixed point results,” Comput. Math. Appl., 60, 2508–2515 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    W. Sintunavarat, Y. J. Cho, and P. Kumam, “Common fixed point theorems for c-distance in ordered cone metric spaces,” Comput. Math. Appl., 62, 1969–1978 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    S. Wang and B. Guo, “Distance in cone metric spaces and common fixed point theorems,” Appl. Math. Lett., 24, 1735–1739 (2011).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • H. Rahimi
    • 1
  • G. Soleimani Rad
    • 2
  1. 1.Islamic Azad. University, Central Tehran BranchTehranIran
  2. 2.Young Researchers and Elite ClubIslamic Azad. University, Central Tehran BranchTehranIran

Personalised recommendations