# On the Best Approximation in the Mean by Algebraic Polynomials with Weight and the Exact Values of Widths for the Classes of Functions

- 43 Downloads
- 1 Citations

is obtained on the class *L* _{2} ^{ r } (*D* _{ ρ })*,* where *r ∈* ℤ_{+}; \( {D}_{\rho} = \sigma (x)\frac{d^2}{d{ x}^2}+\tau (x)\frac{d}{d x} \) *, σ* and τ are polynomials of at most the second and first degrees, respectively, *ρ* is a weight function, 0 *< p* ≤ 2*,* 0 *< h <* 1*, λ* _{ n }(*ρ*) are eigenvalues of the operator *D* _{ ρ } *, φ* is a nonnegative measurable and summable function (in the interval (*a, b*)) which is not equivalent to zero, *Ω* _{ k,ρ } is the generalized modulus of continuity of the *k* th order in the space *L* _{2,ρ } (*a, b*)*,* and *E* _{ n } (*f*)_{2,ρ } is the best polynomial approximation in the mean with weight *ρ* for a function *f ∈ L* _{2,ρ } (*a, b*)*.* The exact values of widths for the classes of functions specified by the characteristic of smoothness *Ω* _{ k,ρ } and the *K*-functional \( \mathbb{K} \) _{m} are also obtained.

## Keywords

Fourier Series Orthogonal Polynomial Approximation Theory Hermite Polynomial Jacobi Polynomial## Preview

Unable to display preview. Download preview PDF.

## References

- 1.A. F. Nikiforov and V. B. Uvarov,
*Special Functions in Mathematical Physics*[in Russian], Nauka, Moscow (1978).Google Scholar - 2.V. A. Abilov, F. V. Abilova, and M. K. Kerimov, “Sharp estimates for the rate of convergence of Fourier series in orthogonal polynomials in the space
*L*_{2}((*a, b*)*,p*(*x*)) ,”*Zh. Vychisl. Mat. Mat. Fiz.*,**49**, No. 6, 966–980 (2009).zbMATHMathSciNetGoogle Scholar - 3.Y. L. Luke,
*Mathematical Functions and Their Approximations*, Academic Press, New York (1975).zbMATHGoogle Scholar - 4.D. Jackson,
*Fourier Series and Orthogonal Polynomials*, Carus Mathematical Monograph, No. 6, Mathematical Association of America (1941).Google Scholar - 5.I. P. Natanson,
*Constructive Theory of Functions*[in Russian], Gostekhizdat, Moscow (1949).Google Scholar - 6.P. K. Suetin,
*Classical Orthogonal Polynomials*[in Russian], Fizmatlit, Moscow (2007).Google Scholar - 7.M. K. Potapov, “On the approximation of nonperiodic functions by algebraic polynomials,”
*Vestn. Mosk. Univ., Ser. Mat. Mekh.*,**4**, 14–25 (1960).MathSciNetGoogle Scholar - 8.V. M. Yakhnin, “On the remainders of the expansion of functions whose
*r*th derivative satisfies the Lipschitz condition in the Fourier series in Jacobi polynomials,”*Ukr. Mat. Zh.*,**12**, No. 2, 194–204 (1960).Google Scholar - 9.G. V. Zhidkov, “Constructive characteristic of one class of nonperiodic functions,”
*Dokl. Akad. Nauk SSSR*,**169**, No. 5, 1002–1005 (1969).Google Scholar - 10.S. Z. Rafal’son, “On the approximation of functions in the mean by Fourier–Jacobi sums,”
*Izv. Vyssh. Uchebn. Zaved., Ser. Mat.*, No. 4, 54–62 (1968).Google Scholar - 11.S. Z. Rafal’son, “On the approximation of functions in the mean by Fourier–Hermite sums,”
*Izv. Vyssh. Uchebn. Zaved., Ser. Mat.*, No. 7, 78–84 (1968).Google Scholar - 12.G. Froid, “On the approximation with weight by algebraic polynomials on the real axis,”
*Dokl. Akad. Nauk*,**191**, No. 2, 293–294 (1970).MathSciNetGoogle Scholar - 13.A. S. Dzhafarov, “Averaged moduli of continuity and some their connections with the best approximations,”
*Dokl. Akad. Nauk SSSR*,**236**, No. 2, 288–291 (1977).MathSciNetGoogle Scholar - 14.B. A. Khalilova, “On the Fourier–Jacobi coefficients and approximation of functions by ultraspherical polynomials,”
*Izv. Akad. Nauk Azerb. SSR, Ser. Fiz.-Tekh. Mat. Nauk*, No. 2, 87–94 (1973).Google Scholar - 15.V. P. Motornyi, “On the convergence in the mean of Fourier series in Legendre polynomials,”
*Izv. Akad. Nauk SSSR, Ser. Mat.*,**37**, No. 1, 135–147 (1973).zbMATHMathSciNetGoogle Scholar - 16.V. M. Badkov, “Approximate properties of Fourier series in orthogonal polynomials,”
*Usp. Mat. Nauk*,**33**, No. 4, 51–106 (1978).zbMATHMathSciNetGoogle Scholar - 17.V. M. Fedorov, “Approximation by algebraic Fourier–Hermite polynomials with weight,”
*Izv. Vyssh. Uchebn. Zaved., Ser. Mat.*, No. 6, 55–63 (1984).Google Scholar - 18.D. V. Alekseev, “Approximation by Chebyshev–Hermite polynomials with weight on the real axis,”
*Vestn. Mosk. Univ., Ser. Mat. Mekh.*, No. 6, 68–71 (1997).Google Scholar - 19.V. A. Abilov, “Approximation of functions by Fourier–Laguerre sums,”
*Mat. Zametki*,**57**, No. 2, 163–170 (1995).MathSciNetGoogle Scholar - 20.V. A. Abilov and F. V. Abilova, “Approximation of functions by algebraic polynomials in the mean,”
*Izv. Vyssh. Uchebn. Zaved., Ser. Mat.*, No. 3, 61–63 (1997).Google Scholar - 21.M. V. Abilov and G. A. Aigunov, “Some problems of the approximation of functions of many variables by Fourier sums in the space
*L*_{2}((*a, b*)^{n};*p*(*x*))*,*”*Usp. Mat. Nauk*, 59, No. 6, 201–202 (2004).CrossRefMathSciNetGoogle Scholar - 22.A. G. Babenko, “Exact Jackson–Stechkin inequality for
*L*^{2}-approximations on a half line with Laguerre weight,” in:*Proc. of the Internat. Stechkin School on the Theory of Functions (Russia, Miass, Chelyabinsk Region, July 24–August 3, 1998)*[in Russian], Institute of Mathematics and Mechanics, Ural Division of the Russian Academy of Sciences, Ekaterinburg (1999), pp. 38–63.Google Scholar - 23.S. B. Vakarchuk, “On the Jackson-type inequalities in
*L*_{2}[*−*1*,*1] and exact values of*n*-widths for functional classes,”*Ukr. Mat. Visn.*,**3**, No. 41, 102–119 (2006).MathSciNetGoogle Scholar - 24.N. P. Korneichuk, “Exact constant in the D. Jackson theorem on the best uniform approximation of continuous periodic functions,”
*Dokl. Akad. Nauk SSSR*,**145**, No. 3, 514–515 (1962).MathSciNetGoogle Scholar - 25.N. I. Chernykh, “On the Jackson inequality in
*L*_{2}*,*”*Tr. Mat. Inst. Akad. Nauk SSSR*,**88**, 71–74 (1967).Google Scholar - 26.L. V. Taikov, “Inequalities containing best approximations and modulus of continuity in
*L*_{2}*,*”*Mat. Zametki*,**20**, No. 3, 433–438 (1976).zbMATHMathSciNetGoogle Scholar - 27.A. A. Ligun, “Exact inequalities between the best approximations and the moduli of continuity in the space
*L*_{2}*,*”*Mat. Zametki*,**24**, No. 6, 785–792 (1978).zbMATHMathSciNetGoogle Scholar - 28.A. G. Babenko, “On the exact constant in the Jackson inequality in
*L*^{2}*,*”*Mat. Zametki*,**39**, No. 5, 651–664 (1986).MathSciNetGoogle Scholar - 29.A. I. Stepanets and A. S. Serdyuk, “Direct and inverse theorems in the theory of approximation of functions in the space
*S*^{p}*,*”*Ukr. Mat. Zh.*,**54**, No. 1, 106–124 (2002);*English translation: Ukr. Math. J.*,**54**, No. 1, 126–148 (2002).CrossRefMathSciNetGoogle Scholar - 30.A. S. Serdyuk, “Widths in the space
*S*^{p}of the classes of functions defined by the moduli of continuity of their derivatives” in:*Extreme Problems of the Theory of Functions and Related Problems*[in Ukrainian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 46 (2003), pp. 229–248.Google Scholar - 31.S. B. Vakarchuk, “Jackson-type inequalities and widths for the classes of functions in
*L*_{2}*,*”*Mat. Zametki*,**80**, No. 1, 11–19 (2006).CrossRefzbMATHMathSciNetGoogle Scholar - 32.S. B. Vakarchuk and V. I. Zabutnaya, “Exact Jackson–Stechkin-type inequalities in
*L*_{2}and the widths of functional classes”*Mat. Zametki*,**86**, No. 3, 328–336 (2009).CrossRefMathSciNetGoogle Scholar - 33.V. I. Ivanov and O. I. Smirnov,
*Jackson and Young Constants in the Space L*_{p}[in Russian], Tula University, Tula (1995).Google Scholar - 34.I. K. Daugavet,
*Introduction to the Approximation Theory of Functions*[in Russian], Leningrad University, Leningrad (1977).Google Scholar - 35.M. K. Potapov, “On the use of one operator of generalized shift in the approximation theory,”
*Vestn. Mosk. Univ., Ser. Mat. Mekh.*, No. 3, 38–48 (1998).Google Scholar - 36.G. Szegö,
*Orthogonal Polynomials*[Russian translation], Fizmatgiz, Moscow (1962).Google Scholar - 37.A. Pinkus,
*n-Widths in Approximation Theory*, Springer, New York (1985).CrossRefzbMATHGoogle Scholar - 38.J. Bergh and J. Löfström,
*Interpolation Spaces. An Introduction*[Russian translation], Mir, Moscow (1980).Google Scholar - 39.S. B. Vakarchuk, “
*K*-functionals and exact values of*n*-widths for some classes from*L*_{2}*,*”*Mat. Zametki*,**66**, No. 4, 494–499 (1999).CrossRefMathSciNetGoogle Scholar - 40.S. B. Vakarchuk, “On the
*K*-functionals and exact values of*n*-widths for some classes from the spaces*C*(2*π*) and*L*_{1}(2*π*)*,*”*Mat. Zametki*,**71**, No. 4, 522–531 (2002).CrossRefMathSciNetGoogle Scholar - 41.V. M. Tikhomirov,
*Some Problems of Approximation Theory*[in Russian], Moscow University, Moscow (1976).Google Scholar - 42.V. A. Abilov, “On the coefficients of Fourier–Hermite series for continuous functions,”
*Izv. Vyssh. Uchebn. Zaved., Ser. Mat.*, No. 12, 3–8 (1969).Google Scholar - 43.I. A. Shevchuk,
*Approximation by Polynomials and the Traces of Functions Continuous on a Segment*[in Russian], Naukova Dumka, Kiev (1992).Google Scholar