Ukrainian Mathematical Journal

, Volume 65, Issue 11, pp 1743–1748 | Cite as

Asymptotic Behavior of a Counting Process in the Maximum scheme

  • I. K. Matsak

We determine the exact asymptotic behavior of the logarithm of a counting process in the maximum scheme.


Asymptotic Behavior Independent Random Variable Iterate Logarithm Counting Process Bernoulli Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. I. Resnick, “Inverses of extremal processes,” Adv. Appl. Probab., 6, No. 2, 392–406 (1974).CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    R. V. Shorrock, “On discrete time extremal processes,” Adv. Appl. Probab., 6, No. 3, 580–592 (1974).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer, Berlin (1987).Google Scholar
  4. 4.
    V. V. Buldyhin, K.-H. Indlekofer, O. I. Klesov, and J. G. Steinebach, Pseudoregular Functions and Generalized Renewal Processes [in Ukrainian], TVIMS, Kyiv (2012).Google Scholar
  5. 5.
    A. Khintchin, “Uber einen Satz der Wahrscheinlichkeitsrechnung,” Fund. Math., 6, No. 1, 9–12 (1924).Google Scholar
  6. 6.
    V. V. Petrov, Sums of Independent Random Variables [in Russian], Nauka, Moscow (1972).Google Scholar
  7. 7.
    J. Pickands, “Sample sequences of maxima,” Ann. Math. Statist., 38, No. 5, 1570–1574 (1967).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    J. Pickands, “An iterated logarithm law for the maximum in a stationary Gaussian sequence,” Z. Wahrscheinlichkeitstheorie, 12, No. 3, 344–355 (1969).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    L. de Haan and A. Hordijk, “The rate of growth of sample maxima,” Ann. Math. Statist., 43, 1185–1196 (1972).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    L. de Haan and A. Ferreira, Extreme Values Theory: an Introduction, Springer, (Berlin) 2006.Google Scholar
  11. 11.
    K. S. Akbash and I. K. Matsak, “One improvement of the law of iterated logarithm for the maximum scheme,” Ukr. Mat. Zh., 64, No. 8, 1132–1137 (2012); English translation: Ukr. Math. J., 64, No. 8, 1290–1296 (2013).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • I. K. Matsak
    • 1
  1. 1.Shevchenko Kyiv National UniversityKyivUkraine

Personalised recommendations