Advertisement

Ukrainian Mathematical Journal

, Volume 65, Issue 11, pp 1681–1697 | Cite as

Two-Phase Solitonlike Solutions of the Cauchy Problem for a Singularly Perturbed Korteweg-De-Vries Equation with Variable Coefficients

  • V. H. Samoilenko
  • Yu. I. Samoilenko
Article
  • 36 Downloads

We describe a set of initial conditions for which the Cauchy problem for a singularly perturbed Korteweg–de-Vries equation with variable coefficients has an asymptotic two-phase solitonlike solution. The notion of the manifold of initial data of the Cauchy problem for which this solution exists is proposed.

Keywords

Cauchy Problem Asymptotic Solution Soliton Solution Initial Function Nonlinear Partial Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1963).Google Scholar
  2. 2.
    N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko, Method of Accelerated Convergence in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1969).Google Scholar
  3. 3.
    A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations. Invariant Tori [in Russian], Moscow, Nauka (1987).Google Scholar
  4. 4.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons. Inverse Scattering Transform [in Russian], Nauka, Moscow (1980).Google Scholar
  5. 5.
    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London (1984).Google Scholar
  6. 6.
    G. L. Lam, Jr., Elements of Soliton Theory, Wiley, New York (1980).Google Scholar
  7. 7.
    R. K. Bullough and P. J. Caudrey (editors), Solitons, Springer, Berlin (1980).Google Scholar
  8. 8.
    D. Blacmore, A. K. Prykarpatsky, and V. Hr. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics. Spectral and Integrability Analysis, World Scientific, Singapore (2011).Google Scholar
  9. 9.
    N. J. Zabusky and M. D. Kruskal, “Interaction of solitons in a collisionless plasma and recurrence of initial states,” Phys. Rev. Lett., 15, 240–243 (1965).CrossRefzbMATHGoogle Scholar
  10. 10.
    C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg–de-Vries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).CrossRefGoogle Scholar
  11. 11.
    R. M. Miura and M. D. Kruskal, “Application of nonlinear WKB-method to the Korteweg–de-Vries equation,” SIAM Appl. Math., 26, No. 2, 376–395 (1974).CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    V. P. Maslov, Complex WKB Method in Nonlinear Equations [in Russian], Nauka, Moscow (1977).Google Scholar
  13. 13.
    S. Yu. Dobrokhotov and V. P. Maslov, “Finite-zone almost periodic solutions in the WKB approximations,” in: VINITI, Series on Contemporary Problems of Mathematics [in Russian], Vol. 15, VINITI, Moscow (1980), pp. 3–94.Google Scholar
  14. 14.
    V. P. Maslov and G. A. Omel’yanov, “Asymptotic solitonlike solutions of equations with small dispersion,” Usp. Mat. Nauk, 36, Issue 3 (219), 63–124 (1981).zbMATHMathSciNetGoogle Scholar
  15. 15.
    H. Flaschka, M. G. Forest, and D.W. McLaughlin, “Multiphase averaging and the inverse spectral solution of the Korteweg–de-Vries equation,” Comm. Pure Appl. Math., 33, No. 6, 739–784 (1980).CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Yu. A. Mitropol’skii, N. N. Bogolyubov, Jr., A. K. Prikarpatskii, and V. G. Samoilenko, Integrable Dynamical Systems. Spectral and Differential-Geometric Aspects [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  17. 17.
    P. D. Lax and C. D. Levermore, “The small dispersion limit of the Korteweg–de-Vries equation. I,” Comm. Pure Appl. Math., 36, No. 3, 253–290 (1983).CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    P. D. Lax and C. D. Levermore, “The small dispersion limit of the Korteweg–de-Vries equation. II,” Comm. Pure Appl. Math., 36, No. 5, 571–593 (1983).CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    P. D. Lax and C. D. Levermore, “The small dispersion limit of the Korteweg–de-Vries equation. III,” Comm. Pure Appl. Math., 36, No. 6, 809–829 (1983).CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    S. Venakides, “The Korteweg–de-Vries equation with small dispersion: higher order Lax–Levermore theory,” Comm. Pure Appl. Math., 43, No. 3, 335–361 (1990).CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    D. W. McLaughlin and J. A. Strain, “Computing the weak limit of KdV,” Comm. Pure Appl. Math., 47, No. 10, 1319–1364 (1994).CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    T. Grava and C. Klein, “Numerical solution of the small dispersion limit of Korteweg–de-Vries and Whitham equations,” Comm. Pure Appl. Math., 60, No. 11, 1623–1664 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    F. de Kerf, Asymptotic Analysis of a Class of Perturbed Korteweg–de-Vries Initial-Value Problems, Centrum voor Wiskunde en Informatica, Amsterdam (1988).Google Scholar
  24. 24.
    L. A. Kalyakin, “Perturbation of the Korteweg–de-Vries soliton,” Teor. Mat. Fiz., 92, No. 1, 62–76 (1992).CrossRefMathSciNetGoogle Scholar
  25. 25.
    A. M. Il’in and L. A. Kalyakin, “Perturbation of finite-soliton solutions of the Korteweg–de-Vries equation,” Dokl. Akad. Nauk, 336, No. 5, 595–598 (1994).MathSciNetGoogle Scholar
  26. 26.
    S. G. Glebov, O. M. Kiselev, and V. A. Lazarev, “Birth of solitons during passage through local resonance,” Proc. Steklov Inst. Math. Suppl., 1, 84–90 (2003).MathSciNetGoogle Scholar
  27. 27.
    S. G. Glebov, O. M. Kiselev, and V. A. Lazarev, “Slow passage through resonance for a weakly nonlinear dispersive wave,” SIAM J. Appl. Math., 65, No. 6, 2158–2177 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    S. G. Glebov and O. M. Kiselev, “The stimulated scattering of solitons on a resonance,” J. Nonlin. Math. Phys., 12, No. 3, 330–341 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    V. P. Maslov and G. A. Omel’yanov, Geometric Asymptotics for PDE. I, American Mathematical Society, Providence, RI (2001).Google Scholar
  30. 30.
    A. Sjoberg, “On the Korteweg–de-Vries equation: existence and uniqueness,” J. Math. Anal. Appl., 29, No. 3, 569–579 (1970).CrossRefMathSciNetGoogle Scholar
  31. 31.
    E. Ya. Khruslov, “Asymptotics of the solution of the Cauchy problem for the Korteweg–de-Vries equation with stepwise initial data,” Mat. Sb., 99(141), No. 2, 261–281 (1976).Google Scholar
  32. 32.
    I. Egorova, K. Grunert, and G. Teschl, “On Cauchy problem for the Korteweg–de Vries equation with step-like finite gap initial data I. Schwartz-type perturbations,” Nonlinearity, 22, 1431–1457 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    V. B. Baranetskii and V. P. Kotlyarov, “Asymptotic behavior in the region of the trailing edge of the solution to the KdV equation with ‘step-like’ initial condition,” Teor. Mat. Fiz., 126, No. 2, 214–227 (2001).CrossRefMathSciNetGoogle Scholar
  34. 34.
    T. Kato, “On the Korteweg–de-Vries equation,” Manuscr. Math., 28, 89–99 (1979).CrossRefzbMATHGoogle Scholar
  35. 35.
    V. M. Yakupov, “On the Cauchy problem for the Korteweg–de-Vries equation,” Differents. Uravn., 11, No. 3, 556–561 (1976).Google Scholar
  36. 36.
    V. A. Arkad’ev, A. K. Pogrebkov, and M. K. Polivanov, “Singular solutions of the KdV equation and the method of inverse scattering problem,” Zap. Nauchn. Sem. LOMI, 133, 17–37 (1984).zbMATHMathSciNetGoogle Scholar
  37. 37.
    S. I. Pokhozhaev, “On singular solutions of the Korteweg–de-Vries equation,” Mat. Zametki, 88, Issue 5, 770–777 (2010).CrossRefMathSciNetGoogle Scholar
  38. 38.
    S. I. Pokhozhaev, “On the absence of global solutions of the Korteweg–de Vries equation,” Sovr. Mat. Fundam. Napr., 39, 141–150 (2011).Google Scholar
  39. 39.
    A.V. Faminskii, “Cauchy problem for the Korteweg–de-Vries equation and its generalizations,” Tr. Sem. im. Petrovskogo, Issue 13, 56–105 (1988).Google Scholar
  40. 40.
    S. N. Kruzhkov and A.V. Faminskii, “Generalized solutions of the Cauchy problem for the Korteweg–de-Vries equation,” Mat. Sb., 120, No 3, 396–425 (1983).MathSciNetGoogle Scholar
  41. 41.
    A.V. Faminskii and I. Yu. Bashlykova, “Weak solutions to one initial-boundary-value problem with three boundary conditions for quasilinear evolution equations of the third order,” Ukr. Math. Bull., 5, No. 1, 83–98 (2008).MathSciNetGoogle Scholar
  42. 42.
    V. H. Samoilenko and Yu. I. Samoilenko, “Asymptotic two-phase solitonlike solutions of the singularly perturbed Korteweg–de-Vries equation with variable coefficients,” Ukr. Mat. Zh., 60, No. 3, 378–387 (2008); English translation: Ukr. Math. J., 60, No. 3, 449–461 (2008).CrossRefGoogle Scholar
  43. 43.
    Yu. I. Samoilenko, “One-phase solitonlike solutions of the Cauchy problem for the singularly perturbed Korteweg–de-Vries equation with variable coefficients (the case of special initial conditions),” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Ukrainian], 9, No. 2 (2012), pp. 327–340.Google Scholar
  44. 44.
    M. A. Shubin, Pseudodifferential Operators and Spectral Theory [in Russian], Nauka, Moscow (1978).Google Scholar
  45. 45.
    Yu. I. Samoilenko, “Asymptotic solutions of the singularly perturbed Korteweg–de-Vries equation with variable coefficients (general case),” Mat. Visn. NTSh, 7, 227–242 (2010).Google Scholar
  46. 46.
    Yu. I. Samoilenko, “Existence of the solution of Cauchy problem for the Hopf equation with variable coefficients in the space of rapidly decreasing functions,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Ukrainian], 9, No. 1 (2012), pp. 293–300.Google Scholar
  47. 47.
    Yu. I. Samoilenko, “Existence of the solution of Cauchy problem for a first-order linear partial differential equation with variable coefficients in the space of rapidly decreasing functions,” Bukovyn. Mat. Zh., 1, No 1-2, 118–122 (2013).Google Scholar
  48. 48.
    Yu. M. Berezanskii, G. F. Us, and Z. G. Sheftel’, Functional Analysis [in Russian], Vyshcha Shkola, Kiev (1990).Google Scholar
  49. 49.
    Yu. D. Holovatyi, V. M. Kyrylych, and S. P. Lavrenyuk, Differential Equations [in Ukrainian], Franko Lviv National University, Lviv (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. H. Samoilenko
    • 1
  • Yu. I. Samoilenko
    • 1
  1. 1.Shevchenko Kyiv National UniversityKyivUkraine

Personalised recommendations