Advertisement

Ukrainian Mathematical Journal

, Volume 65, Issue 9, pp 1426–1445 | Cite as

Parallel Affine Immersions \( {M^n}\to {{\mathbb{R}}^{n+2 }} \) with Flat Connection

  • E. A. Shugailo
Article
  • 38 Downloads

We present a classification of parallel affine immersions f : \( {M^n}\to {{\mathbb{R}}^{n+2 }} \)Mn ! Rn + 2 with flat connection according to the rank of the Weingarten mapping.

Keywords

Fundamental Form Null Distribution Radius Vector Christoffel Symbol Transverse Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge University Press, Cambridge (1994).zbMATHGoogle Scholar
  2. 2.
    U. Lumiste, “Submanifolds with parallel fundamental form,” in: Handbook of Differential Geometry, Vol. I Elsevier, Amsterdam (2000), pp. 779–864.Google Scholar
  3. 3.
    D. Ferus, “Immersion with parallel second fundamental form,” Math. Z., 140, 87–93 (1974).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    L. Vrancken, “Parallel affine immersions with maximal codimension,” Tohoku Math. J., 53, 511–531 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    C. Scharlach and L. Vrancken, “Parallel surfaces in affine 4-space,” Abh. Math. Sem. Univ. Hamburg, 73, 167–179 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    K. Nomizu and U. Pinkall, “On the geometry of affine immersions,” Math. Z., 195, 165–178 (1987).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    K. Nomizu and L. Vrancken, “A new equiaffine theory for surfaces in \( {{\mathbb{R}}^4} \) R4; ” Int. J. Math., 4, 127–165 (1993).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    M. Magid and L. Vrancken, “Affine surfaces in \( {{\mathbb{R}}^5} \)R5 with zero cubic form,” Different. Geom. Appl., 14(2), 125–136 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    F. Dillen and L. Vrancken, “Parallel hypersurfaces of affine spaces,” Sem. Mat. Messina Ser., 2(16), 71–80 (1993).zbMATHMathSciNetGoogle Scholar
  10. 10.
    O. O. Shugailo, “On affine immersions with flat connections,” J. Math. Phys., Anal., Geom., 8, No. 1, 90–105 (2012).zbMATHMathSciNetGoogle Scholar
  11. 11.
    K. Nomizu and B. Opozda, “On affine hypersurfaces with parallel nullity,” J. Math. Soc. Jpn., 44, No. 4, 693–699 (1992).CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    O. O. Shugailo, “Affine submanifolds of rank two,” J. Math. Phys., Anal., Geom., 9, No. 2, 227–238 (2013).zbMATHMathSciNetGoogle Scholar
  13. 13.
    M. Magid and L. Vrancken, “Flat affine surfaces in \( {{\mathbb{R}}^4} \) with flat normal connection,” Geom. Dedic., 81, 19–31 (2000).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • E. A. Shugailo
    • 1
  1. 1.Karazin Kharkov National UniversityKharkovUkraine

Personalised recommendations