Skip to main content

Thin Subsets of Groups

For a group G and a natural number m; a subset A of G is called m-thin if, for each finite subset F of G; there exists a finite subset K of G such that |F g A| ≤ m for all gG \ K: We show that each m-thin subset of an Abelian group G of cardinality ℵ n ; n = 0, 1,… can be split into ≤ m n+1 1-thin subsets. On the other hand, we construct a group G of cardinality ℵ ω and select a 2-thin subset of G which cannot be split into finitely many 1-thin subsets.

This is a preview of subscription content, access via your institution.

References

  1. Ie. Lutsenko and I. V. Protasov, “Sparse, thin and other subsets of groups,” Int. J. Algebra Comput., 11, 491–510 (2009).

  2. Ie. Lutsenko and I. V. Protasov, “Relatively thin and sparse subsets of groups,” Ukr. Math. J., 63, No. 2, 216–225 (2011).

  3. Ie. Lutsenko and I. Protasov, “Thin subsets of balleans,” Appl. Gen. Topology, 11, No. 2, 89–93 (2010).

  4. I. V. Protasov, “Selective survey on subset combinatorics of groups,” Ukr. Math. Bull., 7, 220–257 (2010).

    Google Scholar 

  5. I. Protasov, “Partitions of groups into thin subsets,” Algebra Discrete Math., 11, 88–92 (2011).

    MathSciNet  Google Scholar 

  6. T. Banakh and N. Lyaskovska, “On thin complete ideals of subsets of groups,” Ukr. Math. J., 63, No. 6, 741–754 (2011).

    Article  MathSciNet  Google Scholar 

  7. O. Petrenko and I. V. Protasov, “Thin ultrafilters,” Notre Dame J. Formal Logic., 53, 79–88 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Protasov and M. Zarichnyi, “General asymptology,” Math. Stud. Monogr. Ser., VNTL Publ., Lviv, 12 (2007).

  9. J. Roe, “Lectures on coarse geometry,” AMS Univ. Lect. Ser., RI, Providence, 31 (2003).

  10. R. Engelking, General Topology, PWN, Warszawa (1985).

    Google Scholar 

  11. J. C. Simms, “Another characterization of Alephs: decompositions of hyperspace,” Notre Dame J. Formal Logic., 38, 19–36 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  12. R. O. Davies, “The power of the continuum on some propositions of the plane geometry,” Fundam. Math., 52, 277–281 (1963).

    MATH  Google Scholar 

  13. R. O. Davies, “On a problem of Erd¨os concerning decomposition of the plane,” Proc. Cambridge Phil. Soc., 59, 33–36 (1963).

    Article  MATH  Google Scholar 

  14. N. Hindman and D. Strauss, Algebra in the Stone–Cěch Compactification: Theory and Applications, Walter de Gruyter, Berlin; New York (1998).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 65, No. 9, pp. 1245–1253, September, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Protasov, I.V., Slobodyanyuk, S. Thin Subsets of Groups. Ukr Math J 65, 1384–1393 (2014). https://doi.org/10.1007/s11253-014-0866-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-014-0866-2

Keywords

  • Abelian Group
  • Uniform Space
  • Regular Cardinal
  • Discrete Subset
  • Limit Cardinal