Ukrainian Mathematical Journal

, Volume 65, Issue 7, pp 1032–1041 | Cite as

Extended Tauberian Theorem for the weighted mean Method of Summability

  • Ï. Çanak
  • Ü. Totur

We prove a new Tauberian-like theorem. For a real sequence u = (u n ), on the basis of the weighted mean summability of its generator sequence (V (0) n,p (∆u)) and some other conditions, this theorem establishes the property of slow oscillation of the indicated sequence.


Oscillatory Behavior Real Sequence Sequence Versus Summability Method Integer Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ï. Çanak and Ü. Totur, “Some Tauberian theorems for the weighted mean methods of summability,” Comput. Math. Appl., 62, 2609–2615 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ï. Çanak and Ü. Totur, “Some Tauberian theorems for Borel summability methods,” Appl. Math. Lett., 23, No. 3, 302–305 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Ï. Çanak and Ü. Totur, “A condition under which slow oscillation of a sequence follows from Cesàro summability of its generator sequence,” Appl. Math. Comput., 216, No. 5, 1618–1623 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Ï. Çanak, Ü. Totur, and B. P. Allahverdiev, “Tauberian conditions with controlled oscillatory behavior,” Appl. Math. Lett., 25, No. 3, 252–256 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ï. Çanak, Ü. Totur, and M. Dik, “One-sided Tauberian conditions for (A, k) summability method,” Math. Comput. Modelling, 51, No. 5-6, 425–430 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Č. V. Stanojević, “Analysis of divergence: control and management of divergent process,” Graduate Research Seminar Lecture Notes, Ed. ˙Ï. Çanak, Univ. Missouri-Rolla, Fall (1998), 56 p.Google Scholar
  7. 7.
    G. H. Hardy, Divergent Series, Clarendon Press, Oxford (1949).Google Scholar
  8. 8.
    H. Tietz, “Schmidtsche Umkehrbedingungen für Potenzreihenverfahren,” Acta Sci. Math., 54, No. 3-4, 355–365 (1990).zbMATHMathSciNetGoogle Scholar
  9. 9.
    H. Tietz and K. Zeller, “Tauber-Bedingungen für Verfahren mit Abschnittskonvergenz,” Acta Math. Hung, 81, No. 3, 241–247 (1998).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    F. Móricz and B. E. Rhoades, “Necessary and sufficient Tauberian conditions for certain weighted mean methods of summability,” Acta Math. Hung., 66, No. 1-2, 105–111 (1995).CrossRefzbMATHGoogle Scholar
  11. 11.
    Ï. Çanak, “An extended Tauberian theorem for the (C, 1) summability method,” Appl. Math. Lett., 21, No. 1, 74–80 (2008).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ï. Çanak
    • 1
  • Ü. Totur
    • 2
  1. 1.Ege UniversityIzmirTurkey
  2. 2.Adnan Menderes UniversityAydinTurkey

Personalised recommendations