Ukrainian Mathematical Journal

, Volume 65, Issue 6, pp 945–952 | Cite as

α-Sasakian 3-Metric as a Ricci Soliton

  • S. Kundu

We prove that if the metric of a 3-dimensional α-Sasakian manifold is a Ricci soliton, then it is either of constant curvature or of constant scalar curvature. We also establish some properties of the potential vector field U of the Ricci soliton. Finally, we give an example of an α-Sasakian 3-metric as a nontrivial Ricci soliton.


Sectional Curvature Heisenberg Group Constant Curvature Contact Structure Ricci Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston (2002).CrossRefzbMATHGoogle Scholar
  2. 2.
    B. Chow and D. Knopf, “The Ricci flow: An introduction,” Math. Surv. Monogr., Amer. Math. Soc., Providence, RI (2004).Google Scholar
  3. 3.
    B. S. Guilfoyle, Einstein Metrics Adapted to a Contact Structure on 3-Manifolds, Preprint, http://arXiv. org/abs/math/0012027 (2000).
  4. 4.
    R. S. Hamilton, “The Ricci flow on surfaces,” in: Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., 71, American Math. Soc. (1988), pp. 237–262.Google Scholar
  5. 5.
    D. Janssens and L. Vanhecke, “Almost contact structures and curvature tensors,” Kodai Math. J., 4, 1–27 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    G. Perelman, The Entropy Formula for the Ricci Flow and Its Geometric Applications, Preprint, http://arXiv. org/abs/math.DG/02111159.
  7. 7.
    J. A. Schouten, Ricci Calculus, 2nd Ed., Springer-Verlag, Berlin (1954).CrossRefzbMATHGoogle Scholar
  8. 8.
    R. Sharma, “Certain results on K-contact and (к, μ)-contact manifolds,” J. Geom., 89, 138–147 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    R. Sharma and A. Ghosh, “Sasakian 3-manifold as a Ricci soliton represents the Heisenberg group,” Int. J. Geom. Meth. Modern Phys., 8, No. 1, 149–154 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, New York (1970).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Kundu
    • 1
  1. 1.Loreto CollegeKolkataIndia

Personalised recommendations