Skip to main content
Log in

Probability Measures on the Group of Walsh Functions With Trivial Equivalence Class

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish necessary and sufficient conditions for the retrieval, to within a shift, of a composition of three Poisson distributions and a uniform distribution on five or six elements of the group of Walsh functions according to the absolute values of their characteristic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Rosenblatt, “Phase retrieval,” Comm. Math. Phys., 95, 317–343 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Carnal and M. Dozzi, “On a decomposition problem for multivariate probability measures,” J. Multivar. Anal., 31, 165–177 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Carnal and G. M. Fel’dman, “Phase retrieval for probability measures on Abelian groups, I,” J. Theor. Probab., 8, No. 3, 717–725 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Carnal and G. M. Fel’dman, “Phase retrieval for probability measures on Abelian groups, II,” J. Theor. Probab., 10, No. 4, 1065–1074 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Carnal and G. M. Fel’dman, “On one property of entire characteristic functions of finite order with real zeros,” Dokl. Akad. Nauk, 366, No. 2, 162–163 (1999).

    MathSciNet  Google Scholar 

  6. H. Carnal and G. M. Feldman, “A stability property for probability measures on Abelian groups,” Statist. Probab. Lett., 49, 39–44 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. P. Il’inskaya, “Retrieval of phase for the probability measures on the group of characters of a Cantor–Walsh group,” Dop. Nats. Akad. Nauk Ukr., No. 8, 11–14 (2003).

    Google Scholar 

  8. B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Walsh Series and Transformations. Theory and Applications [in Russian], Nauka, Moscow (1987).

  9. I. P. Il’inskaya, “The arithmetic of a semigroup of series of Walsh functions,” J. Austral. Math. Soc. Ser. A, 365–378 (2000).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 65, No. 5, pp. 717–721, May, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Il’inskaya, I.P., Neguritsa, D.S. Probability Measures on the Group of Walsh Functions With Trivial Equivalence Class. Ukr Math J 65, 793–798 (2013). https://doi.org/10.1007/s11253-013-0816-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-013-0816-4

Keywords

Navigation