Skip to main content
Log in

Self-Affine Singular and Nowhere Monotone Functions Related to the Q-Representation of Real Numbers

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study functional, differential, integral, self-affine, and fractal properties of continuous functions from a finite-parameter family of functions with a continual set of “peculiarities.” Almost all functions in this family are singular (their derivative is equal to zero almost everywhere in a sense of the Lebesgue measure) or nowhere monotone and, in particular, not differentiable. We consider various approaches to the definition of these functions (by using a system of functional equations, projectors of the symbols of various representations, distributions of random variables, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Turbin and N. V. Pratsevityi, Fractal Sets, Functions, and Distributions [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  2. R. Salem, “On some singular monotonic functions which are strictly increasing,” Trans. Amer. Math. Soc., 423–439 (1943).

  3. B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis, Holden-Day, San Francisco (1964).

    MATH  Google Scholar 

  4. W. Sierpiński, “Elementary example of an increasing function whose derivative is equal to zero almost everywhere,” Mat. Sb., 30, Issue 3 (1916).

    Google Scholar 

  5. M. V. Prats’ovytyi, Fractal Approach to the Investigation of Singular Distributions [in Ukrainian], Drahomanov National Pedagogic University, Kyiv (1998).

    Google Scholar 

  6. G. Marsalia, “Random variables with independent binary digits,” Ann. Math. Statist., 42, No. 2, 1922–1929 (1971).

    Article  MathSciNet  Google Scholar 

  7. H. Minkowski, Gesammeine Abhandlungen, Bd. 2, Berlin (1911).

  8. T. Takagi, “A simple example of the continuous function without derivative,” Proc. Phys. Math. Soc. Jpn., 1, 176–177 (1903).

    Google Scholar 

  9. S. Albeverio, Ya. Goncharenco, M. Pratsiovytyi, and G. Torbin, “Convolutions of distributions of random variables with independent binary digits,” Random Operators Stochast. Equat., 15, No. 1, 89–97 (2007).

    Article  MATH  Google Scholar 

  10. S. D. Chatterji, “Certain induced measures on the unit interval,” J. London Math. Soc., 38, 325–331 (1963).

    Article  MathSciNet  Google Scholar 

  11. H. Lebesgue, Leçons sur l’Intêgration et la Recherche des Fonctions Primitives, Gauthier-Villars, Paris (1928).

    MATH  Google Scholar 

  12. T. Zamfirescu, “Most monotone functions are singular,” Amer. Math. Mon., 88, 47–49 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. V. Prats’ovytyi and H. M. Torbin, “Fractal geometry and transformations preserving the Hausdorff–Besicovitch dimension,” in: Proc. of the Ukrainian Mathematical Congress, “Dynamical Systems” [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2003), pp. 77–93.

    Google Scholar 

  14. S. Albeverio, M. Pratsiovytyi, and G. Torbin, “Fractal probability distributions and transformations preserving the Hausdorff–Besicovitch dimension,” Ergod. Theory Dynam. Systems, 24, 1–16 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. V. Prats’ovytyi, “Singularity of distributions of random variables given by distributions of elements of the corresponding continued fraction,” Ukr. Mat. Zh., 48, No. 8, 1086–1095 (1996); English translation: Ukr. Math. J., 48, No. 8, 1229–1240 (1996).

    Article  Google Scholar 

  16. I. M. V. Prats’ovyta, “On expansions of numbers in alternating s-adic series and Ostrogradskii series of the first and second kinds,” Ukr. Mat. Zh., 61, No. 7, 958–968 (2009); English translation: Ukr. Math. J., 61, No. 7, 1137–1150 (2009).

    Article  Google Scholar 

  17. S. B. Kozyrev, “On the topological density of winding functions,” Mat. Zametki, 33, No. 1, 71–76 (1983).

    MathSciNet  MATH  Google Scholar 

  18. M. V. Prats’ovytyi and A.V. Kalashnikov, “On one class of continuous functions with complex local structure most of which are singular or not differentiable,” in: Proc. of the Ukrainian Mathematical Congress, “Dynamical Systems”, Institute of Applied Mathematics and Mechanics, Ukrainian National Academy of Sciences, Donetsk, 23 (2011), pp. 178–189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 65, No. 3, pp. 405–417, March, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prats’ovytyi, M.V., Kalashnikov, A. Self-Affine Singular and Nowhere Monotone Functions Related to the Q-Representation of Real Numbers. Ukr Math J 65, 448–462 (2013). https://doi.org/10.1007/s11253-013-0788-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-013-0788-4

Keywords

Navigation