Delayed feedback makes neuronal firing statistics non-Markovian

The instantaneous state of a neural network consists of both the degree of excitation of each neuron and the positions of impulses in communication lines between the neurons. In neurophysiological experiments, the times of neuronal firing are recorded but not the state of communication lines. However, future spiking moments substantially depend on the past positions of impulses in the lines. This suggests that the sequence of intervals between firing moments (interspike intervals, ISI) in the network can be non-Markovian. In the present paper, we analyze this problem for the simplest possible neural “network,” namely, for a single neuron with delayed feedback. The neuron receives excitatory input both from the input Poisson process and from its own output through the feedback line. We obtain exact expressions for the conditional probability density P(t n+1 | t n ,…,t 1, t 0)dt n+1 and prove that P(t n+1 | t n ,…,t 1, t 0) is not reduced to P(t n+1 | t n ,…,t 1) for any n ≥ 0: This means that the output ISI stream cannot be represented as a Markov chain of any finite order.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. L. Gerstein and B. Mandelbrot, “Random walk models for the spike activity of a single neuron,” Biophys. J., 4, 41–68 (1964).

    Article  Google Scholar 

  2. 2.

    V. S. Korolyuk, P. G. Kostyuk, B. Ya. Pjatigorskii, and E. P. Tkachenko, “Mathematical model of spontaneous activity of some neurons in the CNS,” Biofizika, 12, 895–899 (1967).

    Google Scholar 

  3. 3.

    J. G. Nicholls, A. R. Martin, B. G. Wallace, and P. A. Fuchs, From Neuron to Brain, Sinauer Associates, Sunderland (2001).

    Google Scholar 

  4. 4.

    S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” Int. J. Neural Systems, 19, 295–308 (2009).

    Article  Google Scholar 

  5. 5.

    A.V. Holden, “Models of the stochastic activity of neurons,” Lect. Notes Biomath., 12 (1976).

  6. 6.

    P. Bressloff, “Stochastic neural field theory and the system-size expansion,” SIAM J. Appl. Math., 70, 1488–1521 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    T. Britvina and J. J. Eggermont, “A Markov model for interspike interval distributions of auditory cortical neurons that do not show periodic firings,” Formal Asp. Comput., 96, 245–264 (2007).

    MATH  Google Scholar 

  8. 8.

    M. A. Buice and J. D. Cowan, “Statistical mechanics of the neocortex,” Progr. Biophys. Molec. Biol., 99, 53–86 (2009).

    Article  Google Scholar 

  9. 9.

    S. B. Lowen and M. C. Teich, “Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales,” J. Acoust. Amer., 92, 803–806 (1992).

    Article  Google Scholar 

  10. 10.

    M. W. Levine, “Firing rates of a retinal neuron are not predictable from interspike interval statistics,” Biophys. J., 30, 9–26 (1980).

    Article  Google Scholar 

  11. 11.

    R. Ratnam and M. E. Nelson, “Nonrenewal statistics of electrosensory afferent spike trains: Implications for the detection of weak sensory signals,” J. Neurosci., 20, No. 17, 6672–6683 (2000).

    Google Scholar 

  12. 12.

    P. König, A. K. Engel, and W. Singer, “Integrator or coincidence detector? The role of the cortical neuron revisited,” Trends Neurosci., 19, No. 4, 130–137 (1996).

    Article  Google Scholar 

  13. 13.

    A. K. Vidybida, “Information processing in a pyramidal-type neuron,” BioNet’96—Biologieorientierte Informatik und pulspropagierende Netze, Third Workshop, November 14–15, 1996 (Berlin) (1996), pp. 96–99.

  14. 14.

    M. Rudolph and A. Destexhe, “Tuning neocortical pyramidal neurons between integrators and coincidence detectors,” J. Comput. Neurosci., 14, No. 3, 239–251 (2003).

    Article  Google Scholar 

  15. 15.

    B. N. Lundstrom, S. Hong, M. H. Higgs, and A. L. Fairhall, “Two computational regimes of a single-compartment neuron separated by a planar boundary in conductance space,” Neural Comput., 20, 1239–1260 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    A. K. Vidybida, “Inhibition as binding controller at the single neuron level,” BioSystems, 48, 263–267 (1998).

    Article  Google Scholar 

  17. 17.

    D. M. MacKay, “Self-organization in the time domain,” in: M. C. Yovitts, G. T. Jacobi, et al. (editors), Self-Organizing Systems, Spartan Books, Washington (1962), pp. 37–48.

    Google Scholar 

  18. 18.

    A. R. Damasio, “The brain binds entities and events by multiregional activation from convergence zones,” Neural Comput., 1, No. 1, 123–132 (1989).

    Article  Google Scholar 

  19. 19.

    R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk, and H. J. Reitboeck, “Coherent oscillations: a mechanism for feature linking in the visual cortex?,” Biol. Cybernet., 60, No. 2, 121–130 (1988).

    Article  Google Scholar 

  20. 20.

    A. K. Engel, P. König, A. K. Kreiter, C. M. Gray, and W. Singer, “Temporal coding by coherent oscillations as a potential solution to the binding problem: physiological evidence,” in: H. G. Schuster and W. Singer (editors), Nonlinear Dynamics and Neuronal Networks, VCH, Weinheim (1991), pp. 3–25.

    Google Scholar 

  21. 21.

    A. K. Vidybida, “Output stream of a binding neuron,” Ukr. Mat. Zh., 59, No. 12, 1619–1638 (2007); English translation: Ukr. Math. J., 59, No. 12, 1819–1839 (2007).

    MathSciNet  Article  Google Scholar 

  22. 22.

    R. Miles, “Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro,” J. Physiol., 428, 61–77 (1990).

    Google Scholar 

  23. 23.

    B. Barbour, “Synaptic currents evoked in Purkinje cells by stimulating individual granule cells,” Neuron., 11, 759–769 (1993).

    Article  Google Scholar 

  24. 24.

    P. Andersen, “Synaptic integration in hippocampal neurons,” Fidia Res. Found. Neurosci. Award Lect., Raven Press, New York (1991), pp. 51–71.

    Google Scholar 

  25. 25.

    P. Andersen, M. Raastad, and J. F. Storm, “Excitatory synaptic integration in hippocampal pyramids and dentate granule cells,” Cold Spring Harbor Symp. Quant. Biology, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1990), pp. 81–86.

    Google Scholar 

  26. 26.

    V. Aroniadou-Anderjaska, M. Ennis, and M. T. Shipley, “Dendrodendritic recurrent excitation in mitral cells of the rat olfactory bulb,” J. Neurophysiol., 82, 489–494 (1999).

    Google Scholar 

  27. 27.

    J. M. Bekkers and C. F. Stevens, “Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture,” Proc. Nat. Acad. Sci. USA, 88, 7834–7838 (1991).

    Article  Google Scholar 

  28. 28.

    V. Chan-Palay, “The recurrent collaterals of Purkinje cell axons: a correlated study of rat’s cerebellar cortex with electron microscopy and the Golgi-method,” Z. Anat. Entwicklungsgesch., 134, 210–234 (1971).

    Article  Google Scholar 

  29. 29.

    J. Lübke, H. Markram, M. Frotscher, and B. Sakmann, “Frequency and dendritic distribution of autapses established by layer 5 pyramidal neurons in the developing rat neocortex: comparison with synaptic innervation of adjacent neurons of the same class,” J. Neurosci., 16, 3209–3218 (1996).

    Google Scholar 

  30. 30.

    R. A. Nicoll and C. E. Jahr, “Self-excitation of olfactory bulb neurones,” Nature, 296, 441–444 (1982).

    Article  Google Scholar 

  31. 31.

    M. R. Park, J. W. Lighthall, and S. T. Kitai, “Recurrent inhibition in the rat neostriatum,” Brain Res., 194, 359–369 (1980).

    Article  Google Scholar 

  32. 32.

    G. Tamás, E. H. Buhl, and P. Somogyi, “Massive autaptic self-innervation of GABAergic neurons in cat visual cortex,” J. Neurosci., 17, 6352–6364 (1997).

    Google Scholar 

  33. 33.

    H. Van der Loos and E. M. Glaser, “Autapses in neocortex cerebri: synapses between a pyramidal cell’s axon and its own dendrites,” Brain Res., 48, 355–360 (1972).

    Article  Google Scholar 

  34. 34.

    Y. Wu, F. Kawasaki, and R. W. Ordway, “Properties of short-term synaptic depression at larval neuromuscular synapses in wild-type and temperature-sensitive paralytic mutants of drosophila,” J. Neurophysiol., 93, 2396–2405 (2005).

    Article  Google Scholar 

  35. 35.

    J. L. Doob, Stochastic Processes, Wiley, New York (1953).

    Google Scholar 

  36. 36.

    A. K.Vidybida and K. G. Kravchuk, “Output stream of binding neuron with delayed feedback,” Eur. Phys. J. B, 72, No. 2, 279–287 (2009).

    Article  Google Scholar 

  37. 37.

    W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, Wiley, New York (1968).

    Google Scholar 

  38. 38.

    A. K.Vidybida, “Input-output relations in binding neuron,” BioSystems, 89, 160–165 (2007).

    Article  Google Scholar 

  39. 39.

    A. K.Vidybida, “Output stream of binding neuron with instantaneous feedback,” Eur. Phys. J. B, 65, 577–584 (2008); 69, 313 (2009).

  40. 40.

    F. Farkhooi, M. F. Strube-Bloss, and M. P. Nawrot, “Serial correlation in neural spike trains: Experimental evidence, stochastic modelling, and single neuron variability,” Phys. Rev. E, 79 (2009).

  41. 41.

    M. P. Nawrot, C. Boucsein, V. Rodriguez-Molina, et al., “Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro,” Neurocomputing, 70, 1717–1722 (2007).

    Article  Google Scholar 

  42. 42.

    B. Cessac, “A discrete time neural network model with spiking neurons: II: Dynamics with noise,” J. Math. Biology, doi:10.1007/s00285-010-0358-4 (2010).

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Vidybida.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 12, pp. 1587–1609, December, 2012.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 2.77 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vidybida, A.K., Kravchuk, K.G. Delayed feedback makes neuronal firing statistics non-Markovian. Ukr Math J 64, 1793–1815 (2013). https://doi.org/10.1007/s11253-013-0753-2

Download citation

Keywords

  • Spike Train
  • Singular Part
  • Output Stream
  • Conditional Probability Density
  • Nonzero Probability