We generalize the Karamata theorem on the asymptotic behavior of integrals with variable limits to a class of regularly log-periodic functions.
Similar content being viewed by others
References
J. Karamata, “Sur un mode de croissance régulière,” Mathematica (Cluj), 4, 38–53 (1930).
J. Karamata, “Sur un mode de croissance régulière. Théorèmes fondamentaux,” Bull. Soc. Math. France, 61, 55–62 (1933).
N. M. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge (1987).
L. de Haan, On Regular Variation and Its Application to the Weak Convergence of Sample Extremes, Mathematical Centrum, Amsterdam (1975).
E. Seneta, Regularly Varying Functions [Russian translation], Nauka, Moscow (1985).
V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, “On factorization representation for Avakumovic–Karamata functions with nondegenerate groups of regular points,” Anal. Math., 30, 161–192 (2004).
D. B. H. Cline, “Intermediate regular and Π variation,” Proc. London Math. Soc., 68, 594–616 (1994).
V. V. Buldyhin and V. V. Pavlenkov, “Generalization of the Karamata theorem on the asymptotic behavior of integrals,” Teor. Imovir. Mat. Statyst., No. 81, 13–24 (2009).
G. H. Hardy and E. M. Wright, An introduction to the Theory of Numbers, Oxford University Press, Oxford (1975).
M. I. Yadrenko, Dirichlet Principle and Its Applications [in Ukrainian], Vyshcha Shkola, Kyiv (1985).
Author information
Authors and Affiliations
Additional information
V.V. Buldygin (Deceased).
Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 11, pp. 1443–1463, November, 2012.
Rights and permissions
About this article
Cite this article
Buldygin, V.V., Pavlenkov, V.V. Karamata theorem for regularly log-periodic functions. Ukr Math J 64, 1635–1657 (2013). https://doi.org/10.1007/s11253-013-0741-6
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11253-013-0741-6