Skip to main content
Log in

Karamata theorem for regularly log-periodic functions

  • Published:
Ukrainian Mathematical Journal Aims and scope

We generalize the Karamata theorem on the asymptotic behavior of integrals with variable limits to a class of regularly log-periodic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Karamata, “Sur un mode de croissance régulière,” Mathematica (Cluj), 4, 38–53 (1930).

    MATH  Google Scholar 

  2. J. Karamata, “Sur un mode de croissance régulière. Théorèmes fondamentaux,” Bull. Soc. Math. France, 61, 55–62 (1933).

    MathSciNet  Google Scholar 

  3. N. M. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge (1987).

    MATH  Google Scholar 

  4. L. de Haan, On Regular Variation and Its Application to the Weak Convergence of Sample Extremes, Mathematical Centrum, Amsterdam (1975).

    Google Scholar 

  5. E. Seneta, Regularly Varying Functions [Russian translation], Nauka, Moscow (1985).

    Google Scholar 

  6. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, “On factorization representation for Avakumovic–Karamata functions with nondegenerate groups of regular points,” Anal. Math., 30, 161–192 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. B. H. Cline, “Intermediate regular and Π variation,” Proc. London Math. Soc., 68, 594–616 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. V. Buldyhin and V. V. Pavlenkov, “Generalization of the Karamata theorem on the asymptotic behavior of integrals,” Teor. Imovir. Mat. Statyst., No. 81, 13–24 (2009).

  9. G. H. Hardy and E. M. Wright, An introduction to the Theory of Numbers, Oxford University Press, Oxford (1975).

    Google Scholar 

  10. M. I. Yadrenko, Dirichlet Principle and Its Applications [in Ukrainian], Vyshcha Shkola, Kyiv (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

V.V. Buldygin (Deceased).

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 11, pp. 1443–1463, November, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buldygin, V.V., Pavlenkov, V.V. Karamata theorem for regularly log-periodic functions. Ukr Math J 64, 1635–1657 (2013). https://doi.org/10.1007/s11253-013-0741-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-013-0741-6

Keywords

Navigation