Ukrainian Mathematical Journal

, Volume 64, Issue 7, pp 1144–1150 | Cite as

Denseness of the set of Cauchy problems with nonunique solutions in the set of all Cauchy problems

  • V. Yu. Slyusarchuk
Article
  • 66 Downloads
We prove the following theorem: Let E be an arbitrary Banach space, let G be an open set in the space \( \mathbb{R}\times E \), and let f: GE be an arbitrary continuous mapping. Then, for an arbitrary point (t0, x0) ∈ G and an arbitrary number ε > 0, there exists a continuous mapping g: GE such that
$$ \mathop{\sup}\limits_{{\left( {t,x} \right)\in G}}\left\| {g\left( {t,x} \right)-f\left( {t,x} \right)} \right\|\leqslant \varepsilon $$
and the Cauchy problem
$$ \frac{dz(t) }{dt }=g\left( {t,z(t)} \right),\quad z\left( {{t_0}} \right)={x_0} $$
has more than one solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations [in Russian], Gostekhizdat, Leningrad (1949).Google Scholar
  2. 2.
    I. G. Petrovskii, Lectures on the Theory of Ordinary Differential Equations [in Russian], Nauka, Moscow (1973).Google Scholar
  3. 3.
    P. Hartman, Ordinary Differential Equations [Russian translation], Mir, Moscow (1970).Google Scholar
  4. 4.
    A. M. Samoilenko, M. O. Perestyuk, and I. O. Parasyuk, Differential Equations [in Ukrainian], Lybid’, Kyiv (2003).Google Scholar
  5. 5.
    A. N. Godunov, “On the Peano theorem in Banach spaces,” Funkts. Anal. Prilozhen., 9, Issue 1, 59–60 (1975).MathSciNetGoogle Scholar
  6. 6.
    J. Dieudonné, “Deux exemples singuliers d’équations différentielles,” Acta. Sci. Math., 12, Pt. B, 38–40 (1950).MATHGoogle Scholar
  7. 7.
    S. G. Lobanov, “Peano theorem is not true for any infinite-dimensional Fréchet space,” Mat. Sb., 184, No. 2, 83–86 (1993).Google Scholar
  8. 8.
    S. A. Shkarin, “On one Smolyanov’s problem related to the infinite-dimensional Peano theorem,” Differents. Uravn., 28, No. 6, 1092 (1992).Google Scholar
  9. 9.
    S. G. Lobanov and O. G. Smolyanov, “Ordinary differential equations in locally convex spaces,” Usp. Mat. Nauk, 49, Issue 3 (297), 93–168 (1994).MathSciNetGoogle Scholar
  10. 10.
    V. E. Slyusarchuk, “On the denseness of the set of unsolvable Cauchy problems in the set of all Cauchy problems in the case of an infinite-dimensional Banach space,” Nelin. Kolyvannya, 5, No. 1, 86–89 (2002); English translation: Nonlin. Oscillations, 5, No. 1, 79–82 (2002).Google Scholar
  11. 11.
    H. Kneser, “Über die Lösungen eines Systems gewöhnlicher Differentialgleichungen das der Lipschitzschen Bedingung nicht genügt,” S.-B. Preuß. Akad. Wiss., Phys.-Math. Kl., 171–174 (1923).Google Scholar
  12. 12.
    A. Beck, “Uniqueness of flow solutions of differential equations,” Lect. Notes Math., 318, 30–50 (1973).CrossRefGoogle Scholar
  13. 13.
    P. Hartman, “A differential equation with nonunique solutions,” Amer. Math. Monthly, 70, 255–259 (1963).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    M. A. Lavrentjev, “Sur une équation différentielle du premier ordre,” Math. Z., 23, 197–209 (1925).MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. G. Krein, Linear Equations in a Banach Space [in Russian], Nauka, Moscow (1971).Google Scholar
  16. 16.
    T. Kato, Perturbation Theory for Linear Operators [Russian translation], Mir, Moscow (1972).Google Scholar
  17. 17.
    V. A. Trenogin, Functional Analysis [in Russian], Nauka, Moscow (1989).Google Scholar
  18. 18.
    V. Yu. Slyusarchuk, “Cauchy problem with nonunique solutions,” Nauk. Visn. Cherniv. Univ., Ser. Mat., 1, No. 4, 117–118 (2011).MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • V. Yu. Slyusarchuk
    • 1
  1. 1.National University of Water Management and Nature Resources UseRivneUkraine

Personalised recommendations