Ukrainian Mathematical Journal

, Volume 64, Issue 7, pp 1109–1127 | Cite as

Asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg–de Vries equation with variable coefficients

  • V. H. Samoilenko
  • Yu. I. Samoilenko
Article

We propose an algorithm for the construction of asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg–de Vries equation with variable coefficients and establish the accuracy with which the main term asymptotically satisfies the considered equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. Scott, Active and Nonlinear Wave Propagation in Electronics, Wiley, New York (1970).Google Scholar
  2. 2.
    J. Scott-Russel, “Report on waves,” in: Reports of the Fourteenth Meeting of the British Association for the Advancement of Science, John Murray, London (1845), pp. 311–390.Google Scholar
  3. 3.
    D. J. Korteweg and G. de Vries, “On the change in form of long waves advancing in a rectangular canal and a new type of long stationary waves,” Philos. Mag., No. 39, 422–433 (1895).Google Scholar
  4. 4.
    F. D. Tappert, “Improved Korteweg–de Vries equation for ion acoustic waves,” Phys. Fluids, 15, 2446–2447 (1975).CrossRefGoogle Scholar
  5. 5.
    H. Kever and G. K. Morikawa, “Korteweg–de Vries equation for nonlinear hydromagnetic waves in a warm collision free plasma,” Phys. Fluids, 12, 2090–2093 (1969).CrossRefGoogle Scholar
  6. 6.
    N. J. Zabusky, “Solitons and energy transport in nonlinear lattices,” Comput. Phys. Comm., 5, 1–10 (1973).CrossRefGoogle Scholar
  7. 7.
    S. Leibovich, “Weakly nonlinear waves in rotating fluids,” J. Fluid. Mech., 42, 803–822 (1970).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics. From Pendulum to Turbulence and Chaos [in Russian], Nauka, Moscow (1988).Google Scholar
  9. 9.
    C. S. Su and C. S. Gardner, “The Korteweg–de Vries equation and generalizations. III. Derivation of the Korteweg–de Vries equation and Burger’s equation,” J. Math. Phys., 10, 536–539 (1969).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    N. J. Zabusky and M. D. Kruskal, “Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states,” Phys. Rev. Lett., 15, 240–243 (1965).MATHCrossRefGoogle Scholar
  11. 11.
    C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg–de Vries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).MATHCrossRefGoogle Scholar
  12. 12.
    P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Comm. Pure Appl. Math., 21, No. 15, 467–490 (1968).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    V. E. Zakharov and L. D. Faddeev, “The Korteweg–de Vries equation is a completely integrable Hamiltonian system,” Funkts. Anal. Prilozhen., 5, No. 4, 18–27 (1971).Google Scholar
  14. 14.
    P. D. Lax, “Periodic solutions of the Korteweg–de Vries equation,” Lect. Appl. Math., 15, 467–490 (1974).MathSciNetGoogle Scholar
  15. 15.
    V. A. Marchenko, “Periodic Korteweg–de Vries problem,” Mat. Sb., 95, No. 3, 331–356 (1974).MathSciNetGoogle Scholar
  16. 16.
    S. P. Novikov, “Periodic problem for the Korteweg–de Vries equation,” Funkts. Anal. Prilozhen., 8, No. 3, 54–66 (1974).Google Scholar
  17. 17.
    V. E. Zakharov and S. V. Manakov, “Generalization of the inverse scattering transform,” Teor. Mat. Fiz., 27, No. 3, 283–287 (1976).MATHCrossRefGoogle Scholar
  18. 18.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons. Inverse Scattering Transform [in Russian], Nauka, Moscow (1980).Google Scholar
  19. 19.
    G. L. Lam, Jr., Elements of Soliton Theory, Wiley, New York (1980).Google Scholar
  20. 20.
    R. K. Bullough and P. J. Caudrey (editors), Solitons, Springer, Berlin (1980).MATHGoogle Scholar
  21. 21.
    L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach to the Theory of Solitons [in Russian], Nauka, Moscow (1986).Google Scholar
  22. 22.
    M. J. Ablowitz and H. Segur, Solitons and Inverse Scattering Transform, Society of Industrial and Applied Mathematics, Philadelphia (1981).MATHCrossRefGoogle Scholar
  23. 23.
    Yu. A. Mitropol’skii, N. N. Bogolyubov, Jr., A. K. Prikarpatskii, and V. G. Samoilenko, Integrable Dynamical Systems. Spectral and Algebraic-Geometric Aspects [in Russian], Naukova Dumka, Kiev (1987).Google Scholar
  24. 24.
    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London (1984).Google Scholar
  25. 25.
    A. C. Newell, Solitons in Mathematics and Physics, Society for Industrial and Applied Mathematics (1985).CrossRefGoogle Scholar
  26. 26.
    L. P. Nizhnik, Inverse Scattering Problems for Hyperbolic Equations [in Russian], Naukova Dumka, Kiev (1991).Google Scholar
  27. 27.
    J. M. Dye and A. Parker, “An inverse scattering scheme for the regularized long-wave equation,” J. Math. Phys., 41, No. 5, 2889–2904 (2000).MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    T. Miwa, M. Jimbo, and E. Date, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras, Cambridge University, Cambridge (2000).MATHGoogle Scholar
  29. 29.
    D. Blackmore, A. K. Prykarpatsky, and V. H. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics. Spectral and Symplectic Integrability Analysis, World Scientific, Singapore (2011).MATHCrossRefGoogle Scholar
  30. 30.
    V. P. Maslov and G. A. Omel’yanov, “Asymptotic soliton-like solutions of equations with small dispersion,” Usp. Mat. Nauk, Issue 36 (219), No. 2, 63–124 (1981).Google Scholar
  31. 31.
    V. P. Maslov and G. A. Omel’yanov, Geometric Asymptotics for PDE. I, American Mathematical Society, Providence (2001).MATHGoogle Scholar
  32. 32.
    Yu. I. Samoilenko, “Asymptotic expansions for one-phase soliton-type solution to perturbed Korteweg–de Vries equation,” in: Proceedings of the Fifth International Conference “Symmetry in Nonlinear Mathematical Physics,” Vol. 3, Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2004), pp. 1435–1441.Google Scholar
  33. 33.
    V. H. Samoilenko and Yu. I. Samoilenko, “Asymptotic expansions for one-phase soliton-type solutions of the Korteweg–de Vries equation with variable coefficients,” Ukr. Mat. Zh., 57, No. 1, 111–124 (2005); English translation: Ukr. Math. J., 57, No. 1, 132–148 (2005).CrossRefGoogle Scholar
  34. 34.
    V. H. Samoilenko and Yu. I. Samoilenko, “Asymptotic solutions of the Cauchy problem for the singularly perturbed Korteweg–de Vries equation with variable coefficients,” Ukr. Mat. Zh., 59, No. 1, 122–132 (2007); English translation: Ukr. Math. J., 59, No. 1, 126–139 (2007).CrossRefGoogle Scholar
  35. 35.
    Yu. I. Samoilenko, “Asymptotic expansions for one-phase soliton-like solutions of the Cauchy problem for the Korteweg–de Vries equation with variable coefficients and small dispersion,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 336–337, 170–177 (2007).Google Scholar
  36. 36.
    V. H. Samoilenko and Yu. I. Samoilenko, “Asymptotic two-phase soliton-like solutions of the singularly perturbed Korteweg–de Vries equation with variable coefficients,” Ukr. Mat. Zh., 60, No. 3, 378–387 (2008); English translation: Ukr. Math. J., 60, No. 3, 449–461 (2008).CrossRefGoogle Scholar
  37. 37.
    Yu. I. Samoilenko, “Asymptotic solutions of the singularly perturbed Korteweg–de Vries equation with variable coefficients (general case),” Mat. Visn. NTSh, 7, 227–242 (2010).Google Scholar
  38. 38.
    R. M. Miura, “The Korteweg–de Vries equation: a survey of results,” SIAM Rev., 18, No. 3, 412–459 (1976).MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    F. de Kerf, Asymptotic Analysis of a Class of Perturbed Korteweg–de Vries Initial Value Problems, CWI, Amsterdam (1988).MATHGoogle Scholar
  40. 40.
    V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • V. H. Samoilenko
    • 1
  • Yu. I. Samoilenko
    • 1
  1. 1.KyivUkraine

Personalised recommendations