Ukrainian Mathematical Journal

, Volume 64, Issue 7, pp 1078–1089 | Cite as

Problem with pulse action for systems with Bessel–Kolmogorov operators

  • M. I. Konarovs’ka
Article

We construct the fundamental matrix of solutions of the Cauchy problem and a problem with pulse action for systems with Bessel–Kolmogorov operators degenerate in all space variables. Estimates for the fundamental matrix are obtained, and its properties are established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. Eidelman, S. D. Ivasyshen, and A. N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, Birkhäuser, Basel (2004).MATHCrossRefGoogle Scholar
  2. 2.
    S. Polidoro, “On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type,” Matematiche, 49, No. 1, 53–105 (1994).MathSciNetMATHGoogle Scholar
  3. 3.
    M. Di Francesco and S. Polidoro, “On a class of degenerate parabolic equation of Kolmogorov type,” AMRX Appl. Math. Res. Express., No. 3, 77–116 (2005).Google Scholar
  4. 4.
    H. P. Malyt’ska, “On the fundamental solution of the Cauchy problem for a parabolic equation of the Kolmogorov type of arbitrary order degenerate in an arbitrary number of groups of variables,” Mat. Met. Fiz.-Mekh. Polya, 47, No. 4, 131–138 (2004).Google Scholar
  5. 5.
    H. P. Malyt’ska, “Systems of equations of Kolmogorov type,” Ukr. Mat. Zh., 60, No. 12, 1650–1663 (2008); English translation: Ukr. Math. J., 60, No. 12, 1937–1954 (2008).CrossRefGoogle Scholar
  6. 6.
    L. M. Ivasishen, Integral Representation and Sets of Initial Values of Solutions of Parabolic Equations with Bessel Operator and Increasing Coefficients [in Russian], Dep. in UkrINT ÉI, No. 1731-Uk.92, Chernovtsy (1992).Google Scholar
  7. 7.
    T. M. Balabushenko, S. D. Ivasyshen, V. P. Lavrenchuk, and L. M. Mel’nychuk, “Fundamental solution of the Cauchy problem for some parabolic equations with Bessel operator and increasing coefficients,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 288, 5–11 (2006).Google Scholar
  8. 8.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations [in Russian], Vyshcha Shkola, Kiev (1987).Google Scholar
  9. 9.
    N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differential Equations with Impulse Effects: Multivalued Right-Hand Sides with Discontinuities, de Gruyter, Berlin (2011).MATHCrossRefGoogle Scholar
  10. 10.
    A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore (1995).MATHGoogle Scholar
  11. 11.
    B. G. Korenev, An Introduction to the Theory of Bessel Functions [in Russian], Nauka, Moscow (1971).Google Scholar
  12. 12.
    R. Courant, Partial Differential Equations [Russian translation], Mir, Moscow (1964).Google Scholar
  13. 13.
    S. D. Éidel’man, Parabolic Systems [in Russian], Nauka, Moscow (1964).Google Scholar
  14. 14.
    M. I. Matiichuk, Parabolic Singular Boundary-Value Problems [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (1999).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. I. Konarovs’ka
    • 1
  1. 1.ChernivtsiUkraine

Personalised recommendations