Ukrainian Mathematical Journal

, Volume 64, Issue 7, pp 1064–1077 | Cite as

On the Dirichlet problem for the Beltrami equations in finitely connected domains

  • D. A. Kovtonyuk
  • I. V. Petkov
  • V. I. Ryazanov
Article

We establish a series of criteria for the existence of regular solutions of the Dirichlet problem for degenerate Beltrami equations in arbitrary Jordan domains. We also formulate the corresponding criteria for the existence of pseudoregular and multivalued solutions of the Dirichlet problem in the case of finitely connected domains.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Boyarskii, “Generalized solutions of a system of first-order elliptic differential equations with discontinuous coefficients,” Mat. Sb., 43(85), 451–503 (1957).MathSciNetGoogle Scholar
  2. 2.
    I. N. Vekua, Generalized Analytic Functions [in Russian], Fizmatgiz, Moscow (1959).Google Scholar
  3. 3.
    Yu. Dybov, “On regular solutions of the Dirichlet problem for the Beltrami equations,” Complex Var. Elliptic Equat., 55, No. 12, 1099–1116 (2010).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    V. Ryazanov, U. Srebro, and E. Yakubov, “On strong solutions of the Beltrami equations,” Complex Var. Elliptic Equat., 55, No. 1–3, 219–236 (2010).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    V. Ryazanov, U. Srebro, and E. Yakubov, “To strong ring solutions of the Beltrami equations,” Uzbek. Math. J., 1, 127–137 (2009).MathSciNetGoogle Scholar
  6. 6.
    T. V. Lomako, “On the extension of some generalizations of quasiconformal mappings to the boundary,” Ukr. Mat. Zh., 61, No. 10, 1329–1337 (2009); English translation: Ukr. Math. J., 61, No. 10, 1568–1577 (2009).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Hurwitz and R. Courant, Allgemeine Funktionentheorie und Elliptische Functionen, Springer, Berlin (1964).CrossRefGoogle Scholar
  8. 8.
    B. V. Boyarskii, V. Ya. Gutlyanskii, and V. I. Ryazanov, “General Beltrami equations and BMO,” Ukr. Mat. Vestn., 5, No. 3, 305–326 (2008).Google Scholar
  9. 9.
    B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On the Beltrami equations with two characteristics,” Complex Var. Ellipt. Equat., 54, No. 10, 935–950 (2009).MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On integral conditions for the general Beltrami equations,” Compl. Anal. Oper. Theory, 5, No. 3, 835–845 (2011).MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. L. Krushkal’ and R. Kühnay, Quasiconformal Mappings—New Methods and Applications [in Russian], Nauka, Novosibirsk (1984).Google Scholar
  12. 12.
    F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, 353–393 (1962).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    V. Ryazanov, U. Srebro, and E. Yakubov, “On ring solutions of Beltrami equations,” J. Anal. Math., 96, 117–150 (2005).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York (2009).MATHGoogle Scholar
  15. 15.
    R. L. Wilder, Topology of Manifolds, American Mathematical Society, New York (1949).MATHGoogle Scholar
  16. 16.
    E. S. Afanas’eva and V. I. Ryazanov, “Regular domains in the theory of mappings on Riemann manifolds,” in: Proc. of the Institute of Applied Mathematics and Mechanics, Ukrainian National Academy of Sciences [in Russian], 22 (2011), pp. 23–32.Google Scholar
  17. 17.
    A. A. Ignat’ev and V. I. Ryazanov, “Finite mean oscillation in the theory of mappings,” Ukr. Mat. Vestn., 2, No. 3, 395–417 (2005).MathSciNetMATHGoogle Scholar
  18. 18.
    G. M. Goluzin, Geometric Theory of Functions of Complex Variable [in Russian], Nauka, Moscow (1966).Google Scholar
  19. 19.
    V. Ryazanov, U. Srebro, and E. Yakubov, “Integral conditions in the mapping theory,” Ukr. Mat. Vestn., 7, No. 1, 524–535 (2010).MathSciNetGoogle Scholar
  20. 20.
    S. Stoilov, Lectures on the Topological Principles of the Theory of Analytic Functions [in Russian], Nauka, Moscow (1964).Google Scholar
  21. 21.
    V. Ryazanov, U. Srebro, and E. Yakubov, “Integral conditions in the theory of the Beltrami equations,” Complex Var. Elliptic Equat., DOI: 10.1080/17476933.2010.534790 (2011).

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • D. A. Kovtonyuk
    • 1
  • I. V. Petkov
    • 1
  • V. I. Ryazanov
    • 1
  1. 1.DonetskUkraine

Personalised recommendations