We discuss the value-sharing problem, versions of the Hayman conjecture, and the uniqueness problem for p-adic meromorphic functions, as well as their difference operators and difference polynomials.
This is a preview of subscription content, access via your institution.
References
W. W. Adam and E. G. Straus, “Non-Archimedean analytic functions taking the same values at the same points,” Ill. J. Math., 15, 418–424 (1971).
A. Alotaibi, “On the Zeros of af (f (k))n for n ≥ 2;” Comput. Methods Funct. Theory, 4, No. 1, 227–235 (2004).
A. Boutabaa and A. Escassut, “Uniqueness problems and applications of the ultrametric Nevanlinna theory,” Contemp. Math., 319, 53–74 (2003).
H. H. Chen and M. L. Fang, “On the value distribution of f n f′;” Sci. China Ser. A, 38, 789–798 (1995).
J. Clunie, “On a result of Hayman,” J. London Math. Soc., 42, 389–392 (1967).
A. Escassut, J. Ojeda, and C. C. Yang, “Functional equations in a p-adic context,” J. Math. Anal. Appl., 351, No. 1, 350–359 (2009).
F. Gross and C. C. Yang, “On preimages and range sets of meromorphic functions,” Proc. Jpn. Acad., 58, 17–20 (1982).
Ha Huy Khoai, “On p-adic meromorphic functions,” Duke Math. J., 50, 695–711 (1983).
Ha Huy Khoai, “Height of p-adic holomorphic functions and applications,” Internat. Symp. “Holomorphic Mappings, Diophantine Geometry, and Related Topics” (Kyoto, 1992). Surikaisekikenkyusho Kokyuroku, No. 819, 96–105 (1993).
Ha Huy Khoai and Mai Van Tu, “p-Adic Nevanlinna–Cartan theorem,” Int. J. Math., 6, 719–731 (1995).
Ha Huy Khoai and Vu Hoai An, “Value distribution for p-adic hypersurfaces,” Taiwan. J. Math., 7, No. 1, 51–67 (2003).
Ha Huy Khoai and Vu Hoai An, “Value distribution problem for p-adic meromorphic functions and their derivatives,” Ann Toulouse (to appear).
Ha Huy Khoai and My Vinh Quang, “On p-adic Nevanlinna theory,” Lect. Notes Math., 1351, 146–158 (1988).
R. G. Halburd and R. J. Korhonen, “Nevanlinna theory for the difference operator,” Ann. Acad. Sci. Fenn. Math., 31, 463–478 (2006).
Q. Han and P.-C. Hu, “Unicity of meromorphic functions related to their derivatives,” Bull. Belg. Math. Soc. Simon Stevin, 14, 905–918 (2007).
W. K. Hayman, Research Problems in Function Theory, London Athlone Press Univ., London (1967).
P.-C. Hu and C.-C. Yang, Meromorphic Functions over Non-Archimedean Fields, Kluwer, Dordrecht (2000).
K. Liu and L. Z. Yang, “Value distribution of the difference operator,” Arch. Math., 92, No. 3, 270–278 (2009).
I. Lahiri and S. Dewan, “Value distribution of the product of a meromorphic function and its derivative,” Kodai Math. J., 26, 95–100 (2003).
I. Lahiri and C.-C. Yang, “Value distribution of difference polynomials,” Proc. Jpn. Acad., Ser. A, 83, No. 8, 148–151 (2007).
S. Nevo, X. C. Pang, and L. Zalcman, “Picard–Hayman behavior of derivatives of meromorphic functions with multiple zeros,” Electron. Res. Announc. Amer. Math. Soc., 12, 37–43 (2006).
J. Ojeda, “Hayman’s conjecture in a p-adic field,” Taiwan. J. Math., 12, No. 9, 2295–2313 (2008).
C.-C. Yang and X. H. Hua, “Uniqueness and value-sharing of meromorphic functions,” Ann. Acad. Sci. Fenn. Math., 22, 395–406 (1997).
Author information
Authors and Affiliations
Additional information
Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 64, No. 2, pp. 147–164, February, 2012.
Rights and permissions
About this article
Cite this article
An, V.H., Khoai, H.H. Value-sharing problem for p-adic meromorphic functions and their difference operators and difference polynomials. Ukr Math J 64, 163–185 (2012). https://doi.org/10.1007/s11253-012-0636-y
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11253-012-0636-y
Keywords
- Entire Function
- Meromorphic Function
- Difference Operator
- Uniqueness Problem
- Transcendental Entire Function