Ukrainian Mathematical Journal

, Volume 64, Issue 2, pp 163–185 | Cite as

Value-sharing problem for p-adic meromorphic functions and their difference operators and difference polynomials

  • Vu Hoai An
  • Ha Huy Khoai

We discuss the value-sharing problem, versions of the Hayman conjecture, and the uniqueness problem for p-adic meromorphic functions, as well as their difference operators and difference polynomials.


Entire Function Meromorphic Function Difference Operator Uniqueness Problem Transcendental Entire Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. W. Adam and E. G. Straus, “Non-Archimedean analytic functions taking the same values at the same points,” Ill. J. Math., 15, 418–424 (1971).Google Scholar
  2. 2.
    A. Alotaibi, “On the Zeros of af (f (k))n for n ≥ 2;” Comput. Methods Funct. Theory, 4, No. 1, 227–235 (2004).MathSciNetzbMATHGoogle Scholar
  3. 3.
    A. Boutabaa and A. Escassut, “Uniqueness problems and applications of the ultrametric Nevanlinna theory,” Contemp. Math., 319, 53–74 (2003).MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. H. Chen and M. L. Fang, “On the value distribution of f n f′;” Sci. China Ser. A, 38, 789–798 (1995).MathSciNetzbMATHGoogle Scholar
  5. 5.
    J. Clunie, “On a result of Hayman,” J. London Math. Soc., 42, 389–392 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A. Escassut, J. Ojeda, and C. C. Yang, “Functional equations in a p-adic context,” J. Math. Anal. Appl., 351, No. 1, 350–359 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    F. Gross and C. C. Yang, “On preimages and range sets of meromorphic functions,” Proc. Jpn. Acad., 58, 17–20 (1982).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Ha Huy Khoai, “On p-adic meromorphic functions,” Duke Math. J., 50, 695–711 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ha Huy Khoai, “Height of p-adic holomorphic functions and applications,” Internat. Symp. “Holomorphic Mappings, Diophantine Geometry, and Related Topics” (Kyoto, 1992). Surikaisekikenkyusho Kokyuroku, No. 819, 96–105 (1993).Google Scholar
  10. 10.
    Ha Huy Khoai and Mai Van Tu, “p-Adic Nevanlinna–Cartan theorem,” Int. J. Math., 6, 719–731 (1995).zbMATHCrossRefGoogle Scholar
  11. 11.
    Ha Huy Khoai and Vu Hoai An, “Value distribution for p-adic hypersurfaces,” Taiwan. J. Math., 7, No. 1, 51–67 (2003).zbMATHGoogle Scholar
  12. 12.
    Ha Huy Khoai and Vu Hoai An, “Value distribution problem for p-adic meromorphic functions and their derivatives,” Ann Toulouse (to appear).Google Scholar
  13. 13.
    Ha Huy Khoai and My Vinh Quang, “On p-adic Nevanlinna theory,” Lect. Notes Math., 1351, 146–158 (1988).CrossRefGoogle Scholar
  14. 14.
    R. G. Halburd and R. J. Korhonen, “Nevanlinna theory for the difference operator,” Ann. Acad. Sci. Fenn. Math., 31, 463–478 (2006).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Q. Han and P.-C. Hu, “Unicity of meromorphic functions related to their derivatives,” Bull. Belg. Math. Soc. Simon Stevin, 14, 905–918 (2007).MathSciNetzbMATHGoogle Scholar
  16. 16.
    W. K. Hayman, Research Problems in Function Theory, London Athlone Press Univ., London (1967).zbMATHGoogle Scholar
  17. 17.
    P.-C. Hu and C.-C. Yang, Meromorphic Functions over Non-Archimedean Fields, Kluwer, Dordrecht (2000).zbMATHGoogle Scholar
  18. 18.
    K. Liu and L. Z. Yang, “Value distribution of the difference operator,” Arch. Math., 92, No. 3, 270–278 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    I. Lahiri and S. Dewan, “Value distribution of the product of a meromorphic function and its derivative,” Kodai Math. J., 26, 95–100 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    I. Lahiri and C.-C. Yang, “Value distribution of difference polynomials,” Proc. Jpn. Acad., Ser. A, 83, No. 8, 148–151 (2007).CrossRefGoogle Scholar
  21. 21.
    S. Nevo, X. C. Pang, and L. Zalcman, “Picard–Hayman behavior of derivatives of meromorphic functions with multiple zeros,” Electron. Res. Announc. Amer. Math. Soc., 12, 37–43 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    J. Ojeda, “Hayman’s conjecture in a p-adic field,” Taiwan. J. Math., 12, No. 9, 2295–2313 (2008).MathSciNetzbMATHGoogle Scholar
  23. 23.
    C.-C. Yang and X. H. Hua, “Uniqueness and value-sharing of meromorphic functions,” Ann. Acad. Sci. Fenn. Math., 22, 395–406 (1997).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • Vu Hoai An
    • 1
  • Ha Huy Khoai
    • 2
  1. 1.Hai Duong CollegeHai DuongVietnam
  2. 2.Institute of MathematicsHanoiVietnam

Personalised recommendations