Advertisement

Ukrainian Mathematical Journal

, Volume 62, Issue 12, pp 1925–1940 | Cite as

Riemann boundary-value problem on an open rectifiable Jordan curve. II

  • S. A. Plaksa
  • Yu.V. Kud’yavina
Article
  • 31 Downloads

The Riemann boundary-value problem is solved for the classes of open rectifiable Jordan curves extended as compared with previous results and functions defined on these curves.

Keywords

General Solution Characteristic Function Open Curve Jordan Curve Ukrainian National Academy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Plaksa and Yu. V. Kud’yavina, “Riemann Boundary-Value Problem on an Open Rectifiable Jordan Curve. I,” Ukr. Mat. Zh., 62, No. 11, 1511–1522 (2010); English translation: Ukr. Math. J., 62, No. 11, 1752–1765 (2011).Google Scholar
  2. 2.
    Yu. V. Vasil’eva and S. A. Plaksa, “Piecewise-continuous Riemann boundary-value problem on a rectifiable curve,” Ukr. Mat. Zh., 58, No. 5, 616–628 (2006); English translation: Ukr. Math. J., 58, No. 5, 694–708 (2006).MathSciNetzbMATHGoogle Scholar
  3. 3.
    S. A. Plaksa, “Riemann boundary problem with infinite index of logarithmic order on a spiral-form contour. I,” Ukr. Mat. Zh., 42, No. 11, 1509–1517 (1990); English translation: Ukr. Math. J., 42, No. 11, 1351–1358 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    O. F. Gerus, “Some estimates of smoothness moduli of Cauchy integrals,” Ukr. Mat. Zh., 30, No. 5, 594–601 (1978); English translation: Ukr. Math. J., 30, No. 5, 445–460 (1978).MathSciNetzbMATHGoogle Scholar
  5. 5.
    R. K. Seifullaev, “Riemann boundary-value problem on a nonsmooth open curve,” Mat. Sb., 112, No. 2, 147–161 (1980).MathSciNetGoogle Scholar
  6. 6.
    K. Kutlu, “On Riemann boundary-value problem,” An. Univ. Timişoara, Ser. Mat.-Inform., 38, No. 1, 89–96 (2000).MathSciNetzbMATHGoogle Scholar
  7. 7.
    D. Pena and J. Reyes, “Riemann boundary-value problem on a regular open curve,” J. Natur. Geom., 22, No. 1, 1–17 (2002).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • S. A. Plaksa
    • 1
  • Yu.V. Kud’yavina
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKievUkraine

Personalised recommendations