Advertisement

On the asymptotic extension dimension

  • D. Repovš
  • M. Zarichnyi
Article
  • 33 Downloads

We introduce an asymptotic counterpart of the extension dimension defined by Dranishnikov. The main result establishes the relationship between the asymptotic extensional dimension of a proper metric space and the extension dimension of its Higson corona.

Keywords

Asymptotic Dimension Proper Function Extension Dimension Manifold Versus Geodesic Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Gromov, “Asymptotic invariants of infinite groups,” London Math. Soc., Lect. Note Ser., 182, 1–295 (1993).MathSciNetGoogle Scholar
  2. 2.
    G. Bell and A. N. Dranishnikov, Asymptotic Dimension, http://arxiv.org/abs/math/0703766v2.
  3. 3.
    A. N. Dranishnikov, “Asymptotic topology,” Rus. Math. Surv., 55, No. 6, 71–116 (2000).MathSciNetGoogle Scholar
  4. 4.
    A. N. Dranishnikov, “On the theory of extensions of mappings of compact spaces,” Usp. Mat. Nauk, 53, No. 5,65–72 (1998).MathSciNetGoogle Scholar
  5. 5.
    P. Mitchener, “Coarse homology theories,” Algebr. Geom. Topol., 1, 271–297 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    M. Sawicki, “Absolute extensors and absolute neighborhood extensors in asymptotic categories,” Top. Appl., 150, No. 1–3, 59–78 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    G. Bell and A. N. Dranishnikov, “On asymptotic dimension of groups,” Algebr. Geom. Topol., 1, 57–71 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    J. Roe, “From foliations to coarse geometry and back,” in: X. Masa, E. Macias-Virgós, and J. A. Alvarez López (editors), Analysis and Geometry in Foliated Manifolds, World Scientific, Singapore (1995), pp. 195–206.Google Scholar
  9. 9.
    A. N. Dranishnikov and J. Smith, “On asymptotic Assouad–Nagata dimension,” Top. Appl., 154, 934–952 (2007).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • D. Repovš
    • 1
  • M. Zarichnyi
    • 2
  1. 1.University of LjubljanaLjubljanaSlovenia
  2. 2.Lviv National UniversityLvivUkraine

Personalised recommendations