Advertisement

Ukrainian Mathematical Journal

, Volume 62, Issue 9, pp 1420–1448 | Cite as

Elements of a non-gaussian analysis on the spaces of functions of infinitely many variables

  • N. A. Kachanovsky
Article
  • 45 Downloads

We present a review of some results of the non-Gaussian analysis in the biorthogonal approach and consider elements of the analysis associated with the generalized Meixner measure. The main objects of our interest are stochastic integrals, operators of stochastic differentiation, elements of theWick calculus, and related topics.

Keywords

Stochastic Integral Wick Product White Noise Analysis Gaussian Analysis Generalize Translation Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Accardi, “Meixner classes and the square of white noise,” Contemp. Math., 137, 1–13 (2003).Google Scholar
  2. 2.
    L. Accardi and A. Boukas, “The semi-martingale property of the square of white noise integrators,” Lect. Notes Pure Appl. Math., 227, 1–19 (2002).MathSciNetGoogle Scholar
  3. 3.
    L. Accardi and M. Bozéjko, “Interacting Fock space and Gaussianization of probability measures,” Infinite Dimen. Anal. Quantum Probab. Relat. Topol., 1, No. 4, 663–670 (1998).zbMATHCrossRefGoogle Scholar
  4. 4.
    L. Accardi, F. Fagnola, and J. Quaegebeur, “A representation-free quantum stochastic calculus,” J. Funct. Anal., 104, No. 1, 149–197 (1992).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Accardi, U. Franz, and M. Skeide, “Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras,” Comm. Math. Phys., 228, 123–150 (2002).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Albeverio, Yu. M. Berezansky, and V. A. Tesko, “A generalization of an extended stochastic integral,” Ukr. Math. J., 59, No. 5, 645–677 (2007).MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Albeverio, Yu. L. Daletsky, Yu. G. Kondrat’ev, and L. Streit, “Non-Gaussian infinite-dimensional analysis,” J. Funct. Anal., 138, 311–350 (1996).zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Albeverio, Yu. G. Kondrat’ev, and L. Streit, “How to generalize white-noise analysis to non-Gaussian spaces,” Proc. Simp. “Dynamics of Complex and Irregular Systems”, World Scientific, Singapore (1993), pp. 48–60.Google Scholar
  9. 9.
    C. Anderson, “Some properties of Appell-like polynomials,” J. Math. Anal. Appl., 19, 475–491 (1967).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    V. V. Baklan, “On one generalization of stochastic integrals,” Dokl. Akad. Nauk USSR. Ser. A, No. 4, 291–294 (1976).Google Scholar
  11. 11.
    F. E. Benth, “The Gross derivative of generalized random variables,” Infinite Dimen. Anal. Quantum Probab. Relat. Topol., 2, No. 3, 381–396 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Yu. M. Berezansky, “Infinite-dimensional analysis related to generalized translation operator,” Ukr. Math. J., 49, No. 3, 403–450 (1997).CrossRefGoogle Scholar
  13. 13.
    Yu. M. Berezansky, “Pascal measure on generalized functions and the corresponding generalized Meixner polynomials,” Meth. Funct. Anal. Topol., 8, No. 1, 1–13 (2002).MathSciNetGoogle Scholar
  14. 14.
    Yu. M. Berezansky, Self-Adjoint Operators in the Spaces of Functions Depending on Infinitely-Many Variables [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  15. 15.
    Yu. M. Berezansky, “Spectral approach to white-noise analysis,” Proc. Symp. “Dynamics of Complex and Irregular Systems”, World Scientific, Singapore (1993), pp. 131–140.Google Scholar
  16. 16.
    Berezansky Yu. M. and Kondrat’ev Yu. G., “Biorthogonal systems in hypergroups: an extension of non-Gaussian analysis,” Meth. Funct. Anal. Topol., 2, No. 2, 1–50 (1996).zbMATHMathSciNetGoogle Scholar
  17. 17.
    Yu. M. Berezansky and Yu. G. Kondrat’ev, Spectral Methods in Infinite-Dimensional Analysis [in Russian], Naukova Dumka, Kiev (1988).Google Scholar
  18. 18.
    Yu. M. Berezansky, V. D. Livinsky, and E. W. Lytvynov, “Generalization of Gaussian white noise analysis,” Meth. Funct. Anal. Topol., 1, No. 1, 28–55 (1995).zbMATHMathSciNetGoogle Scholar
  19. 19.
    Yu. M. Berezansky, E. W. Lytvynov, and D. A. Mierzejewski, “The Jacobi field of a Lévy process,” Ukr. Math. J., 55, No. 5, 853–858 (2003).MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yu. M. Berezansky and D. A. Mierzejewski, “The structure of extended symmetric Fock space,” Meth. Funct. Anal. Topol., 6, No. 4, 1–13 (2000).zbMATHMathSciNetGoogle Scholar
  21. 21.
    Yu. M. Berezansky and Yu. S. Samoilenko, “Nuclear spaces of functions of infinitely many variables,” Ukr. Math. J., 25, No. 6, 599–609 (1973).CrossRefGoogle Scholar
  22. 22.
    Yu. M. Berezansky and V. A. Tesko, “An approach to the generalization of white-noise analysis,” Operator Theory: Adv. Appl., 190, 123–139 (2009).MathSciNetGoogle Scholar
  23. 23.
    Yu. M. Berezansky and V. A. Tesko, “Orthogonal approach to the construction of the theory of generalized functions of infinitely many variables and the Poisson analysis of White Noise,” Ukr. Math. J., 56, No. 12, 1885–1914 (2004).CrossRefGoogle Scholar
  24. 24.
    Yu. M. Berezansky and V. A. Tesko, “Spaces of test and generalized functions related to generalized translation operators,” Ukr. Math. J., 55, No. 12, 1907–1979 (2003).CrossRefGoogle Scholar
  25. 25.
    Yu. M. Berezansky, G. F. Us, and Z. G. Sheftel, Functional Analysis, Birkhäuser, Basel (1996).zbMATHCrossRefGoogle Scholar
  26. 26.
    R. P. Boas and R. C. Buck, Polynomial Expansions of Analytic Functions, Springer, Berlin (1964).zbMATHGoogle Scholar
  27. 27.
    D. M. Chung, T. S. Chung, and U. C. Ji, “A characterization theorem for operators on white noise functionals,” J. Math. Soc. Jpn., 51, No. 2, 437–447 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    D. M. Chung, U. C. Ji, and N. Obata, “Higher powers of quantum white noises in terms of integral kernel operators,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 1, No. 4, 533–559 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    D. M. Chung, U. C. Ji, and N. Obata, “Quantum stochastic analysis via white noise operators in weighted Fock space,” Rev. Math. Phys., 14, No. 3, 241–272 (2002).zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Yu. L. Daletsky, “A biorthogonal analog of the Hermite polynomials and the inversion of the Fourier transform with respect to a non-Gaussian measure,” Funct. Anal. Appl., 25, No. 2, 138–140 (1991).MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yu. L. Daletsky and S. N. Paramonova, “One formula of the theory of Gaussian measures and the estimation of stochastic integrals,” Teor. Ver. Prilozhen., 19, No. 4, 845–849 (1974).Google Scholar
  32. 32.
    G. Di Nunno, T. Meyer-Brandis, B. Oksendal, and F. Proske, “Malliavin calculus and anticipative Itô formulae for Lévy processes,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 8, No. 2, 235–258 (2005).zbMATHCrossRefGoogle Scholar
  33. 33.
    G. Di Nunno, B. Oksendal, and F. Proske, “Malliavin calculus for Lévy processes with applications to finance,” Universitext, Springer, Berlin (2009).Google Scholar
  34. 34.
    G. Di Nunno, B. Oksendal, and F. Proske, “White noise analysis for Lévy processes,” J. Funct. Anal., 206, 109–148 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    S. Dineen, “Complex analysis in locally convex spaces,” Math. Stud., Amsterdam, North-Holland (1981), 57.Google Scholar
  36. 36.
    A. A. Dorogovtsev, “Extended stochastic integral for smooth functionals of white noise,” Ukr. Math. J., 41, No. 11, 1252–1258 (1989).zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    A. A. Dorogovtsev, “A property of trajectories of extended stochastic integrals,” Sib. Math. J., 34, No. 5, 825–828 (1993).zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    A. A. Dorogovtsev, “Stochastic integral with respect to the Arratia flow,” Dokl. Akad. Nauk, 410, No. 2, 156–157 (2006).MathSciNetGoogle Scholar
  39. 39.
    A. A. Dorogovtsev, “Boundary-value problems for stochastic equations with anticipation,” Dokl. Akad. Nauk, 418, No. 4, 443–446 (2008).Google Scholar
  40. 40.
    A. A. Dorogovtsev, “Fourier transform of Wiener functionals and various methods of stochastic integration,” Theor. Probab. Appl., 34, No. 4, 705–709 (1989).zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    A. A. Dorogovtsev, “Elements of stochastic differential calculus,” in: Math. Today’88 [in Russian], Vyshcha Shkola, Kiev (1988), pp. 105–131.Google Scholar
  42. 42.
    A. A. Dorogovtsev, “Equations with random Gaussian operators and stochastic calculus,” Selected Problems in the Contemporary Theory of Random Processes [in Russian], Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, Kiev (1988), pp. 52–60.Google Scholar
  43. 43.
    A. A. Dorogovtsev, “On the family of Itô formulas for the logarithmic processes,” Asymptotic Analysis of Random Evolutions [in Ukrainian], Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1994), pp. 100–112.Google Scholar
  44. 44.
    A. A. Dorogovtsev, “On the localization of an extended stochastic integral,” Sb. Mat., 197, No. 9–10, 1273–1295 (2006).zbMATHMathSciNetGoogle Scholar
  45. 45.
    A. A. Dorogovtsev, “One version of the Clark representation theorem for Arratia flows,” Theory Stochast. Proc., 11, No. 3–4, 63–70 (2005).MathSciNetGoogle Scholar
  46. 46.
    A. A. Dorogovtsev, Stochastic Analysis and Random Mappings in Hilbert Spaces [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  47. 47.
    A. A. Dorogovtsev, Stochastic Equations with Anticipation, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1996).Google Scholar
  48. 48.
    A. A. Dorogovtsev, “Stochastic integrals with respect to compatible random measures,” Ukr. Math. J., 52, No. 8, 1215–1229 (2000).MathSciNetCrossRefGoogle Scholar
  49. 49.
    A. A. Dorogovtsev, “Stochastic integrals with respect to Gaussian random measures,” Theor. Probab. Math. Statist., 44, 53–59 (1991).Google Scholar
  50. 50.
    A. A. Dorogovtsev, “Stochastic integration and a class of Gaussian random processes,” Ukr. Math. J., 50, No. 4, 550–561 (1998).MathSciNetCrossRefGoogle Scholar
  51. 51.
    I. M. Gelfand and N. Ya. Vilenkin, Generalized Functions, Academic Press, New York–London (1964).Google Scholar
  52. 52.
    B. Grigelionis, “Processes of Meixner type,” Lith. Math. J., 39, No. 1, 33–41 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    B. Grigelionis, “Generalized z-distributions and related stochastic processes,” Lith. Math. J., 41, No. 3, 239–251 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    T. Hida, “Analysis of Brownian functionals,” Math. Lect. Notes, 13, IV+61 (1975).Google Scholar
  55. 55.
    T. Hida, Brownian Motion, Springer, New York (1980).zbMATHGoogle Scholar
  56. 56.
    T. Hida, H. H. Kuo, J. Potthoff, and L. Streit, White Noise. An Infinite-Dimensional Calculus, Kluwer, Dordrecht (1993).zbMATHGoogle Scholar
  57. 57.
    M. Hitsuda, “Formula for Brownian partial derivatives,” Proc. Second Japan–USSR Symp. on Probab. Theory (1972), pp. 111–114.Google Scholar
  58. 58.
    Z. Y. Huang and Y. Wu, “Interacting Fock expansion of Lévy white noise functionals,” Acta Appl. Math., 82, 333–352 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Y. Itô, “Generalized Poisson functionals,” Probab. Theory Relat. Fields, 77, 1–28 (1988).zbMATHCrossRefGoogle Scholar
  60. 60.
    Y. Itô and I. Kubo, “Calculus on Gaussian and Poisson white noises,” Nagoya Math. J., 111, 41–84 (1988).zbMATHMathSciNetGoogle Scholar
  61. 61.
    U. C. Ji and N. Obata, “A role of Bargmann–Segal spaces in characterization and expansion of operators on Fock space,” J. Math. Soc. Jpn., 56, No. 2, 311–338 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    U. C. Ji, N. Obata, and H. Ouerdiane, “Quantum Lévy Laplacian and associated heat equation,” J. Funct. Anal., 249, No. 1, 31–54 (2007).zbMATHMathSciNetCrossRefGoogle Scholar
  63. 63.
    Yu. M. Kabanov, “Extended stochastic integrals,” Teor. Ver. Prilozhen., 20, No. 4, 725–737 (1975).MathSciNetGoogle Scholar
  64. 64.
    Yu. M. Kabanov and A. V. Skorokhod, “Extended stochastic integrals,” Proc. School–Seminar on the Theory of Stochastic Processes [in Russian], Institute of Physics and Mathematics, Vilnius (1975), pp. 123–167.Google Scholar
  65. 65.
    N. A. Kachanovsky, “A generalized stochastic derivative connected with colored noise measures,” Meth. Funct. Anal. Topol., 10, No. 4, 11–29 (2004).zbMATHMathSciNetGoogle Scholar
  66. 66.
    N. A. Kachanovsky, “An extended stochastic integral and a Wick calculus on parametrized Kondratiev-type spaces of Meixner white noise,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 11, No. 4, 541–564 (2008).zbMATHMathSciNetCrossRefGoogle Scholar
  67. 67.
    N. A. Kachanovsky, “Biorthogonal Appell-like systems in a Hilbert space,” Meth. Funct. Anal. Topol., No. 3–4, 36–52 (1996).Google Scholar
  68. 68.
    N. A. Kachanovsky, “Dual Appell-like systems and finite-order spaces in non-Gaussian infinite dimensional analysis,” Meth. Funct. Anal. Topol., 4, No. 2, 41–52 (1998).MathSciNetGoogle Scholar
  69. 69.
    N. A. Kachanovsky, “Dual Appell system and Kondrat’ev spaces in the analysis on Schwartz spaces,” Ukr. Math. J., 49, No. 4, 581–589 (1997).CrossRefGoogle Scholar
  70. 70.
    N. A. Kachanovsky, “Generalized stochastic derivatives on a space of regular generalized functions of Meixner white noise,” Meth. Funct. Anal. and Top., 14, No. 1, 32–53 (2008).zbMATHMathSciNetGoogle Scholar
  71. 71.
    N. A. Kachanovsky, “Generalized stochastic derivatives on parametrized spaces of regular generalized functions of Meixner white noise,” Meth. Funct. Anal. Topol., 14, No. 4, 334–350 (2008).zbMATHMathSciNetGoogle Scholar
  72. 72.
    N. A. Kachanovsky, “Generalized stochastic derivatives on the spaces of nonregular generalized functions of Meixner white noise,” Ukr. Math. J., 60, No. 6, 848–875 (2008).MathSciNetCrossRefGoogle Scholar
  73. 73.
    N. A. Kachanovsky, “On an extended stochastic integral and the Wick calculus on the connected with the generalized Meixner measure Kondratiev-type spaces,” Meth. Funct. Anal. Topol., 13, No. 4, 338–379 (2007).zbMATHMathSciNetGoogle Scholar
  74. 74.
    N. A. Kachanovsky, “An analog of stochastic integral andWick calculus in non-Gaussian infinite-dimensional analysis,” Meth. Funct. Anal. Topol., 3, No. 3, 1–12 (1997).MathSciNetGoogle Scholar
  75. 75.
    N. A. Kachanovsky, “On biorthogonal approach to construction of non-Gaussian analysis,” Can. Math. Soc. Conf. Proc., 29, 367–376 (2000).MathSciNetGoogle Scholar
  76. 76.
    N. A. Kachanovsky, “On the extended stochastic integral connected with the Gamma-measure on an infinite-dimensional space,” Meth. Funct. Anal. Topol., 8, No. 2, 10–32 (2002).zbMATHMathSciNetGoogle Scholar
  77. 77.
    N. A. Kachanovsky, “Pseudodifferential equations and a generalized translation operator in non-Gaussian infinite-dimensional analysis,” Ukr. Math. J., 51, No. 10, 1503–1511 (1999).CrossRefGoogle Scholar
  78. 78.
    N. A. Kachanovsky, “Wick algebras on the spaces of colored noise analysis and its application to quantum stochastic calculus,” Spectral Evolut. Problems, 9, 138–145 (1999).MathSciNetGoogle Scholar
  79. 79.
    N. A. Kachanovsky and S. V. Koshkin, “Minimality of Appell-like systems and imbeddings of test function spaces in a generalization of white noise analysis,” Meth. Funct. Anal. Topol., 5, No. 3, 13–25 (1999).zbMATHMathSciNetGoogle Scholar
  80. 80.
    N. A. Kachanovsky and V. A. Tesko, “Stochastic integral of Hitsuda–Skorokhod-type on the extended Fock space,” Ukr. Math. J., 61, No. 6, 873–907 (2009).CrossRefMathSciNetGoogle Scholar
  81. 81.
    Yu. G. Kondrat’ev, “A space of entire functions of infinitely many variables connected with the rigging of a Fock space,” in: Spectral Analysis of Differential Operators [in Russian], Institute of Mathematics, Academy of Sciences of Ukrainian SSR, Kiev (1980), pp. 18–37.Google Scholar
  82. 82.
    Yu. G. Kondrat’ev, “Nuclear spaces of entire functions in problems of infinite-dimensional analysis,” Dokl. Akad. Nauk SSSR, 254, No. 6, 1325–1329 (1980).MathSciNetGoogle Scholar
  83. 83.
    Yu. G. Kondrat’ev, “Wick powers of Gaussian random processes,” in: Meth. Funct. Anal. Probl. Math. Phys. [in Russian], Institute of Mathematics, Academy of Sciences of Ukrainian SSR, Kiev (1978), pp. 129–158.Google Scholar
  84. 84.
    Yu. G. Kondrat’ev and E. W. Lytvynov, “Operators of gamma white noise calculus,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 3, No. 3, 303–335 (2000).MathSciNetCrossRefGoogle Scholar
  85. 85.
    Yu. G. Kondrat’ev and Yu. S. Samoilenko, “Generalized derivatives of probability measures on ℝ,” Meth. Funct. Anal. Problems Math. Phys. [in Russian], Institute of Mathematics, Academy of Sciences of Ukrainian SSR, Kiev (1978), pp. 159–176.Google Scholar
  86. 86.
    Yu. G. Kondrat’ev and Yu. S. Samoilenko, “Integral representation of generalized positive-definite kernels of infinitely many variables,” Dokl. Akad. Nauk SSSR, 227, No. 4, 800–803 (1976).MathSciNetGoogle Scholar
  87. 87.
    Yu. G. Kondrat’ev and Yu. S. Samoilenko, “The spaces of trial and generalized functions of infinitely many variables,” Rep. Math. Phys., 14, No. 3, 323–348 (1978).MathSciNetGoogle Scholar
  88. 88.
    Yu. G. Kondrat’ev, L. Silva, and L. Streit, “Generalized Appell systems,” Meth. Funct. Anal. Topol., 3, No. 3, 28–61 (1997).MathSciNetGoogle Scholar
  89. 89.
    Yu. G. Kondrat’ev, L. Silva, L. Streit, and G. F. Us, “Analysis on Poisson and Gamma spaces,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 1, No. 1, 91–117 (1998).CrossRefGoogle Scholar
  90. 90.
    Yu. G. Kondrat’ev and L. Streit, “Spaces of white noise distributions: Constructions, descriptions, applications,” Rep. Math. Phys., 33, 341–366 (1993).MathSciNetCrossRefGoogle Scholar
  91. 91.
    Yu. G. Kondrat’ev, L. Streit, W. Westercamp, and J. Yan, “Generalized functions in infinite-dimensional analysis,” Hiroshima Math. J., 28, 213–260 (1998).MathSciNetGoogle Scholar
  92. 92.
    V. D. Koshmanenko and Yu. S. Samoilenko, “Isomorphism of Fock space with a space of functions of infinitely many variables,” Ukr. Math. J., 27, No. 5, 552–555 (1975).CrossRefGoogle Scholar
  93. 93.
    I. Kubo, H. H. Kuo, and A. N. Sengupta, “White noise analysis on a new space of Hida distributions,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 2, No. 3, 315–335 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  94. 94.
    T. Lindstrom, B. Oksendal, and J. Uboe, “Wick multiplication and Itô–Skorokhod stochastic differential equations,” Ideas Meth. Math. Anal., Stochastics Appl., Cambridge Univ. Press (1992), pp. 183–206.Google Scholar
  95. 95.
    E. W. Lytvynov, “Multiple Wiener integrals and non-Gaussian white noise analysis: a Jacobi field approach,” Meth. Funct. Anal. Topol., 1, No. 1, 61–85 (1995).zbMATHMathSciNetGoogle Scholar
  96. 96.
    E. W. Lytvynov, “Orthogonal decompositions for Lévy processes with application to the Gamma, Pascal, and Meixner processes,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 6, No. 1, 73–102 (2003).zbMATHMathSciNetCrossRefGoogle Scholar
  97. 97.
    E. W. Lytvynov, “Polynomials of Meixner’s type in infinite dimensions—Jacobi fields and orthogonality measures,” J. Funct. Anal., 200, No. 1, 118–149 (2003).zbMATHMathSciNetCrossRefGoogle Scholar
  98. 98.
    J. Meixner, “Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugen-den Funktion,” J. London Math. Soc., 9, No. 1, 6–13 (1934).zbMATHCrossRefGoogle Scholar
  99. 99.
    N. V. Norin, “An extended stochastic integral for non-Gaussian measures in local-convex spaces,” Usp. Mat. Nauk, 41, No. 3, 199–200 (1986).MathSciNetGoogle Scholar
  100. 100.
    N. V. Norin, “Stochastic integrals and differentiable measures,” Teor. Ver. Prilozhen., 32, No. 1, 114–124 (1987).zbMATHMathSciNetGoogle Scholar
  101. 101.
    D. Nualart and W. Schoutens, “Chaotic and predictable representations for Lévy processes,” Stochast. Proc. Appl., 90, 109–122 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
  102. 102.
    N. Obata, “Inverse S-transform, Wick product, and overcompleteness of exponential vectors. Quantum information,” Vol. 4, World Scientific, River Edge, NJ (2002), pp. 147–176.Google Scholar
  103. 103.
    N. Obata, “Unitarity criterion in white noise calculus and nonexistence of unitary evolutions driven by higher powers of quantum white noises,” Stochastic Models, II (Spanish), Aportaciones Mat. Investig., Soc. Mat. Mexicana, 16, 251–269 (2001).MathSciNetGoogle Scholar
  104. 104.
    N. Obata, “Wick product of white noise operators and quantum stochastic differential equations,” J. Math. Soc. Jpn., 51, No. 3, 613–641 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  105. 105.
    H. Ouerdiane, “Algèbres nucléaires de fonctions entières et equations aux dérivées partielles stochastiques,” Nagoya Math. J., 151, 107–127 (1998).zbMATHMathSciNetGoogle Scholar
  106. 106.
    H. Ouerdiane, “Distributions gaussiennes et applications aux equations aux dérivées partielles stochastiques,” Math. Phys. Stochast. Anal., World Scientific, River Edge, NJ (2000), pp. 318–331.Google Scholar
  107. 107.
    A. Yu. Pylypenko, “On the properties of an operator of stochastic differentiation constructed on a group,” Ukr. Math. J., 48, No. 4, 623–630 (1996).CrossRefGoogle Scholar
  108. 108.
    I. V. Rodionova, “Analysis connected with generating functions of exponential type in one and infinite dimensions,” Meth. Funct. Anal. Topol., 11, No. 3, 275–297 (2005).zbMATHMathSciNetGoogle Scholar
  109. 109.
    A. V. Skorokhod, Integration in Hilbert Space, Springer, Berlin (1974).zbMATHGoogle Scholar
  110. 110.
    A. V. Skorokhod, “On the generalization of stochastic integrals,” Teor. Ver. Prilozhen., 20, No. 2, 223–238 (1975).Google Scholar
  111. 111.
    O. G. Smolianov, “Differentiable measures on the group of functions taking values in a compact Ide group,” Abstr. 6th Internat. Vilnius Conf. on Probab. Theory Math. Stat., Vilnius (1993), pp. 139–140.Google Scholar
  112. 112.
    V. A. Tesko, “Spaces appearing in the construction of infinite-dimensional analysis according to the biorthogonal scheme,” Ukr. Math. J., 56, No. 7, 1166–1181 (2004).MathSciNetGoogle Scholar
  113. 113.
    N. V. Tsilevich, A. M. Vershik, and M. Yor, “An infinite-dimensional analogue of the Lebesgue measure and selected properties of the gamma process,” J. Funct. Anal., 185, No. 1, 274–296 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  114. 114.
    N. V. Tsilevich, A. M. Vershik, and M. Yor, “Markov–Krein identity and quasiinvariance of the gamma-process,” Zapiski St-Peterburg. Otdel. Steklov Mat. Inst., 283, 21–36 (2001).Google Scholar
  115. 115.
    N. V. Tsilevich and A. M. Vershik, “Quasi-invariance of the gamma process and multiplicative properties of the Poisson–Dirichlet measures,” C. R. Acad. Sci. Ser. I Math., 2, 163–168 (1999).MathSciNetGoogle Scholar
  116. 116.
    G. F. Us, “Dual Appell systems in Poisson analysis,” Meth. Funct. Anal. Topol., 1, No. 1, 93–108 (1995).zbMATHMathSciNetGoogle Scholar
  117. 117.
    G. F. Us, “Toward a colored noise analysis,” Meth. Funct. Anal. Topol., 3, No. 2, 83–99 (1997).zbMATHMathSciNetGoogle Scholar
  118. 118.
    E. Yablonsky, “Characterization of operators on a Kondrat’ev space in the non-Gaussian setting: biorthogonal approach,” Infinite Dimen. Anal. Quantum Probab. Relat. Top., 8, No. 3, 439–452 (2005).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • N. A. Kachanovsky
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations