Advertisement

Ukrainian Mathematical Journal

, Volume 62, Issue 5, pp 824–833 | Cite as

On the convergence of solutions of certain inhomogeneous fourth-order differential equations

  • E. Tunç
Article

The main purpose of this paper is to give sufficient conditions for the convergence of solutions of a certain class of fourth-order nonlinear differential equations using Lyapunov’s second method. Nonlinear functions involved are not necessarily differentiable, but a certain incrementary ratio for a function h lies in a closed subinterval of the Routh–Hurwitz interval.

Keywords

Differential Equation Positive Constant Nonlinear Function Convergence Theorem Trivial Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. U. Afuwape and M. O. Omeike, “Convergence of solutions of certain non-homogeneous third-order ordinary differential equations,” Kragujevac J. Math., 31, 5–16 (2008).zbMATHMathSciNetGoogle Scholar
  2. 2.
    A. U. Afuwape, “Convergence of the solutions for the equation \( {x^{\left( {\text{iv}} \right)}} + a\dddot{x} + b\dddot{x} + g\left( {\dot{x}} \right) + h(x) = p\left( {t,x,\dot{x},\ddot{x},\dddot{x}} \right) \),” Internat. J. Math. Math. Sci., 11, No. 4, 727–734 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. U. Afuwape, “On the convergence of solutions of certain fourth-order differential equations,” An. Şti. Univ. Iaşi. Sec. A (N.S.), 27, 133–138 (1981).MathSciNetGoogle Scholar
  4. 4.
    J. O. C. Ezeilo, “A note on the convergence of solutions of certain second-order differential equations,” Portugal. Math., 24, 49–58 (1965).zbMATHMathSciNetGoogle Scholar
  5. 5.
    J. O. C. Ezeilo, “New properties of the equation \( \dddot{x} + a\ddot{x} + b\dot{x} + h(x) = P\left( {t,x,\dot{x},\ddot{x}} \right) \) for certain special values of the incrementary ratio \( {y^{ - 1}}\left\{ {h\left( {x + y} \right) - h(x)} \right\} \),” in: P. Janssens, J. Mawhin, and N. Rouche (editors), Équations Différentielles et Fonctionnelles Non Linéaires, Hermann, Paris (1973), pp. 447–462.Google Scholar
  6. 6.
    H. O. Tejumola, “On the convergence of solutions of certain third-order differential equations,” Ann. Mat. Pura Appl., 78, 377–386 (1968).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    H. O. Tejumola, “Convergence of solutions of certain ordinary third-order differential equations,” Ann. Mat. Pura Appl., 94, 247–256 (1972).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    E. Tunç, “On the convergence of solutions of certain third-order differential equations,” in: Discrete Dynamics in Nature and Society (2009), pp. 1–12.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • E. Tunç
    • 1
  1. 1.Gaziosmanpasha UniversityTokatTurkey

Personalised recommendations