Advertisement

Ukrainian Mathematical Journal

, Volume 62, Issue 5, pp 758–773 | Cite as

Summation of p-Faber series by the Abel–poisson method in the integral metric

  • V.V. Savchuk
  • M.V. Savchuk
Article
  • 34 Downloads

We establish conditions on the boundary \( \Gamma \) of a bounded simply connected domain \( \Omega \subset \mathbb{C} \) under which the p-Faber series of an arbitrary function from the Smirnov space \( {E_p}\left( \Omega \right),1 \leqslant p < \infty \), can be summed by the Abel–Poisson method on the boundary of the domain up to the limit values of the function itself in the metric of the space \( {L_p}\left( \Gamma \right) \).

Keywords

Hardy Space Connected Domain Subharmonic Function Laurent Expansion Regular Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], Gostekhizdat, Moscow (1950).Google Scholar
  2. 2.
    V. M. Kokilashvili, “On approximation of analytic functions of the class Ep;” Dokl. Akad. Nauk SSSR, 177, No. 2, 261–264 (1967).MathSciNetGoogle Scholar
  3. 3.
    E. M. Dyn’kin, “Rate of polynomial approximation in Ep(G),” Dokl. Akad. Nauk SSSR, 231, No. 3, 529–531 (1976).MathSciNetGoogle Scholar
  4. 4.
    J.-E. Andersson, “On the degree of polynomial approximation in E p(D)” J. Approxim. Theor., 19, 61–68 (1977).zbMATHCrossRefGoogle Scholar
  5. 5.
    V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow (1977).zbMATHGoogle Scholar
  6. 6.
    H. Tietz, “Zur Summierbarkeit von Faber–Reihen,” Abh. Braunschweig. Wiss. Ges., 43, 35–43 (1992).zbMATHMathSciNetGoogle Scholar
  7. 7.
    V. I. Smirnov and N. A. Lebedev, Constructive Theory of Functions of a Complex Variable [in Russian], Nauka, Moscow (1964).Google Scholar
  8. 8.
    V. I. Smirnov, Selected Works. Complex Analysis. Mathematical Theory of Diffraction [in Russian], Leningrad University, Leningrad (1988).zbMATHGoogle Scholar
  9. 9.
    P. Duren, “Smirnov domains and conjugate functions,” J. Approxim. Theor., 5, 393–400 (1972).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. V. Keldysh and M. A. Lavrent’ev, “Sur la représentation conforme des domaines limités par des courbes rectifiables,” Ann. Sci. École Norm. Sup., 54, 1–38 (1937).zbMATHGoogle Scholar
  11. 11.
    J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain [Russian translation], Inostrannaya Literatura, Moscow (1961).zbMATHGoogle Scholar
  12. 12.
    G. David, “Opérateurs intégraux singuliers sur certaines courbes du plan complexe,” Ann. Sci. École Norm. Sup., 17, 157–189 (1984).zbMATHGoogle Scholar
  13. 13.
    M. V. Savchuk, “Summation of series in Faber polynomials of the second kind by the Abel–Poisson method in the integral metric,” Zb. Pr. Inst. Mat. Nats. Akad. Nauk Ukr., 5, No. 1, 324–333 (2008).zbMATHGoogle Scholar
  14. 14.
    S. Warschawski, “U¨ ber das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung,” Math. Z., 35, 321–456 (1932).CrossRefMathSciNetGoogle Scholar
  15. 15.
    S. Ya. Al’per, “On uniform approximation of functions of a complex variable in a closed domain,” Izv. Akad. Nauk SSSR, Ser. Mat., 19, No. 6, 423–444 (1955).zbMATHMathSciNetGoogle Scholar
  16. 16.
    P. K. Suetin, Series in Faber Polynomials [in Russian], Nauka, Moscow (1984).Google Scholar
  17. 17.
    K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs (1962).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • V.V. Savchuk
    • 1
  • M.V. Savchuk
    • 2
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine
  2. 2.Institute for the Public Employment Service Personnel TrainingKyivUkraine

Personalised recommendations