Advertisement

Ukrainian Mathematical Journal

, Volume 62, Issue 4, pp 537–551 | Cite as

On the strong matrix Hamburger moment problem

  • S. M. Zagorodnyuk
Article

We obtain necessary and sufficient conditions for the solvability of the strong matrix Hamburger moment problem. We describe all solutions of the moment problem by using the fundamental results of A. V. Shtraus on generalized resolvents of symmetric operators.

Keywords

Hilbert Space Spectral Function Symmetric Operator Moment Problem Laurent Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. B. Jones, O. Njåstad, and W. J. Thron, “Continued fractions and strong Hamburger moment problems,” Proc. London Math. Soc., (3) 47, No. 2, 363–384 (1983).Google Scholar
  2. 2.
    W. B. Jones, W. J. Thron, and O. Njåstad, “Orthogonal Laurent polynomials and the strong Hamburger moment problem,” J. Math. Anal. Appl., 98, No. 2, 528–554 (1984).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    O. Njåstad, “Solutions of the strong Hamburger moment problem,” J. Math. Anal. Appl., 197, 227–248 (1996).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    W. B. Jones and O. Njåstad, “Orthogonal Laurent polynomials and strong moment theory: a survey,” J. Comput. Appl. Math., 105, No. 1–2, 51–91 (1999).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    K. K. Simonov, “Strong matrix moment problem of Hamburger,” Meth. Funct. Anal. Top., 12, No. 2, 183–196 (2006).MATHMathSciNetGoogle Scholar
  6. 6.
    S. M. Zagorodnyuk, “Positive-definite kernels satisfying difference equations,” Meth. Funct. Anal. Top., 16, No. 1, 83–100 (2010).MathSciNetGoogle Scholar
  7. 7.
    A. V. Shtraus, “Generalized resolvents of symmetric operators,” Izv. Akad. Nauk SSSR, 18, 51–86 (1954).MATHGoogle Scholar
  8. 8.
    M. M. Malamud and S. M. Malamud, “Operator measures in a Hilbert space,” Alg. Analiz, 15, No. 3, 1–52 (2003).MathSciNetGoogle Scholar
  9. 9.
    N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in a Hilbert Space [in Russian], Gostekhteorizdat, Moscow (1950).Google Scholar
  10. 10.
    Yu. M. Berezanskii, Expansion in Eigenfunctions of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).Google Scholar
  11. 11.
    M. Sh. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in a Hilbert Space [in Russian], Leningrad University, Leningrad (1980).Google Scholar
  12. 12.
    M. H. Stone, Linear Transformations in Hilbert Space and Their Applications to Analysis, American Mathematical Society, Providence, RI (1932).Google Scholar
  13. 13.
    N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis [in Russian], Fizmatgiz, Moscow (1961).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • S. M. Zagorodnyuk
    • 1
  1. 1.Kharkov National UniversityKharkovUkraine

Personalised recommendations