Advertisement

Ukrainian Mathematical Journal

, Volume 62, Issue 3, pp 467–482 | Cite as

One-sided approximation of a step by algebraic polynomials in the mean

  • V. P. Motornyi
  • O. V. Motornaya
  • P. K. Nitiema
Article

An asymptotically sharp estimate is obtained for the best one-sided approximation of a step by algebraic polynomials in the space L 1:

Keywords

Bounded Variation Legendre Polynomial Quadrature Formula Absolute Constant Sharp Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Motornyi and A. N. Pas’ko, “On the best one-sided approximation of some classes of differentiable functions in L 1,” East. J. Approxim., 10, No. 1–2, 159–169 (2004).zbMATHMathSciNetGoogle Scholar
  2. 2.
    V. P. Motornyi and A. N. Pas’ko, “The best one-sided approximation of truncated power functions and the estimates of the errors of quadrature formulas for some classes of functions,” Vestn. Dnepropetrovsk. Nats. Univ., Ser. Mat., No. 8, 74–80 (2003).Google Scholar
  3. 3.
    V. P. Motornyi and O. V. Motornaya, “On the one-sided approximation of truncated power functions by algebraic polynomials in the mean,” Tr. Mat. Inst. Ros. Akad. Nauk, 248, 185–193 (2005).MathSciNetGoogle Scholar
  4. 4.
    I. P. Natanson, Constructive Theory of Functions [in Russian], Gostekhizdat, Moscow (1949).Google Scholar
  5. 5.
    A. Kh. Turetskii, Theory of Interpolation in Problems [in Russian], Vyshéishaya Shkola, Minsk (1968).Google Scholar
  6. 6.
    A. Kh. Turetskii, Theory of Interpolation in Problems [in Russian], Vyshéishaya Shkola, Minsk (1977).Google Scholar
  7. 7.
    G. Szegö, Orthogonal Polynomials, American Mathematical Society, New York (1959).zbMATHGoogle Scholar
  8. 8.
    A. L. Garkavi, “On the joint approximation of periodic functions and their derivatives by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat., 24, 103–128 (1960).zbMATHMathSciNetGoogle Scholar
  9. 9.
    V. P. Motornyi and P. C. Nitiema, “On the best L 1-approximation by polynomials of functions which are fractional integrals of summa functions,” East. J. Approxim., 2, No. 4, 409–425 (1994).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • V. P. Motornyi
    • 1
  • O. V. Motornaya
    • 2
  • P. K. Nitiema
    • 3
  1. 1.Dnepropetrovsk National UniversityDnepropetrovskUkraine
  2. 2.Shevchenko Kyiv National UniversityKyivUkraine
  3. 3.Ouagadougou UniversityOuagadougouBurkina Faso

Personalised recommendations