Advertisement

Ukrainian Mathematical Journal

, Volume 62, Issue 1, pp 155–161 | Cite as

On the theory of hyper-Q-homeomorphisms

  • D. A. Kovtonyuk
Article
  • 24 Downloads

We show that if a homeomorphism f of a domain \( D \subset {\mathbb{R}^n} \), n ≥ 2, is a hyper-Q-homeomorphism with QL loc 1 , then fACL. As a consequence, this homeomorphism has partial derivatives and an approximation differential almost everywhere.

Keywords

Quasiconformal Mapping Hausdorff Measure Borel Function Admissible Function Multiplicity Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Iwaniec and G. Martin, Geometrical Function Theory and Nonlinear Analysis, Oxford University, Oxford (2001).Google Scholar
  2. 2.
    O. Martio, V. Ryazanov, U. Srebro, and É. Yakubov, Moduli in Modern Mapping Theory, Springer, New York (2009).zbMATHGoogle Scholar
  3. 3.
    B. V. Shabat, “On the theory of quasiconformal mappings in a space,” Dokl. Akad. Nauk SSSR, 132, No. 5, 1045–1048 (1960).MathSciNetGoogle Scholar
  4. 4.
    B. V. Shabat, “Method of moduli in a space,” Dokl. Akad. Nauk SSSR, 130, No. 6, 1210–1213 (1960).Google Scholar
  5. 5.
    D. Kovtonyuk and V. Ryazanov, “On the theory of mappings with finite area distortion,” J. Anal. Math., 104, 291–306 (2008).CrossRefMathSciNetGoogle Scholar
  6. 6.
    E. A. Poletskii, “Method of moduli for nonhomeomorphic quasiconformal mappings,” Mat. Sb., 83 (125), No. 2, 261–272 (1970).Google Scholar
  7. 7.
    O. Martio, V. Ryazanov, U. Srebro, and É. Yakubov, “On the theory of Q-homeomorphisms,” Dokl. Ros. Akad. Nauk, 381, No. 1, 20–22 (2001).MathSciNetGoogle Scholar
  8. 8.
    C. Bishop, V. Gutlyanskii, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci., 22, 1397–1420 (2003).CrossRefMathSciNetGoogle Scholar
  9. 9.
    P. M. Tamrazov, “Moduli and extremal metrics on nonorientable and twisted Riemannian manifolds,” Ukr. Mat. Zh., 50, No. 10, 1388–1398 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D. Kovtonyuk and V. Ryazanov, “To the theory of mappings with finite area distortion,” Rep. Dep. Math. Univ. Helsinki, 403, 1–11 (2004).Google Scholar
  11. 11.
    R. R. Salimov, “ACL and differentiability of Q-homeomorphisms,” Ann. Acad. Sci. Fenn., Ser. A1. Math., 33, 295–301 (2008).zbMATHMathSciNetGoogle Scholar
  12. 12.
    T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer, Berlin (1955).zbMATHGoogle Scholar
  13. 13.
    S. Saks, Theory of the Integral, Dover, New York (1964).zbMATHGoogle Scholar
  14. 14.
    V. Maz’ya, Sobolev Classes, Springer, Berlin (1985).Google Scholar
  15. 15.
    P. Caraman, n-Dimensional Quasiconformal Mappings, Abacus Press, Tunbridge Wells (1974).zbMATHGoogle Scholar
  16. 16.
    W. P. Ziemer, “Extremal length and conformal capacity,” Trans. Amer. Math. Soc., 126, No. 3, 460–473 (1967).zbMATHMathSciNetGoogle Scholar
  17. 17.
    E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin (1961).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • D. A. Kovtonyuk
    • 1
  1. 1.Institute of Applied Mathematics and MechanicsUkrainian National Academy of SciencesDonetskUkraine

Personalised recommendations