Advertisement

Ukrainian Mathematical Journal

, Volume 62, Issue 1, pp 136–150 | Cite as

Approximations of classes \( B_{p,{{\theta }}}^\Omega \) of functions of many variables by entire functions in the space L q (R d )

  • S. Ya. Yanchenko
Article

Exact-order estimates are obtained for the best approximations of the classes \( B_{p,{{\theta }}}^\Omega \) of functions of many variables by entire functions of the exponential type in the space \( {L_q}\left( {{\mathbb{R}^d}} \right) \).

Keywords

Lower Bound Entire Function Periodic Function Exponential Type Periodic Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Stasyuk and S. Ya. Yanchenko, “Best approximations of classes \( B_{p,{{\theta }}}^\Omega \) of functions of many variables in the space \( {L_p}\left( {{\mathbb{R}^d}} \right) \),” in: Theory of Approximation of Functions and Related Problems [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2008), pp. 367–384.Google Scholar
  2. 2.
    N. K. Bari and S. B. Stechkin, “Best approximations and differential properties of two conjugate functions,” Tr. Mosk. Mat. Obshch., 5, 483–522 (1956).zbMATHGoogle Scholar
  3. 3.
    S. M. Nikol’skii, Approximation of Functions of Many Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1969).Google Scholar
  4. 4.
    V. N. Temlyakov, Approximation of Periodic Function, Nova Science, New York (1993).Google Scholar
  5. 5.
    T. I. Amanov, “Representation and imbedding theorems for the functional spaces \( S_{p,{{\theta }}}^{(r)}B\left( {{\mathbb{R}_n}} \right) \) and \( S_{p,{{\theta }}}^{{{(r)}_*}}B\left( {0 \leq {x_j} \leq 2\pi, j = 1, \ldots, n} \right) \),” Tr. Mat. Inst. Akad. Nauk SSSR, 77, 5–34 (1965).zbMATHMathSciNetGoogle Scholar
  6. 6.
    P. I. Lizorkin and S. M. Nikol’skii, “Spaces of functions of mixed smoothness from the decomposition point of view,” Tr. Mat. Inst. Akad. Nauk SSSR, 187, 143–161 (1989).MathSciNetGoogle Scholar
  7. 7.
    Wang Heping and Sun Yongsheng, “Approximation of multivariate functions with a certain mixed smoothness by entire functions,” Northeast. Math. J., 11(4), 454–466 (1995).zbMATHMathSciNetGoogle Scholar
  8. 8.
    A. S. Romanyuk, “Approximation of the Besov classes of periodic functions of several variables in the space L q,” Ukr. Mat. Zh., 43, No. 10, 1398–1408 (1991).CrossRefMathSciNetGoogle Scholar
  9. 9.
    Sun Yongsheng and Wang Heping, “Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness,” Tr. Mat. Inst. Ros. Akad. Nauk, 219, 356–377 (1997).Google Scholar
  10. 10.
    V. N. Temlyakov, “Approximation of functions with bounded mixed derivative,” Tr. Mat. Inst. Ros. Akad. Nauk, 178, 1–112 (1986).MathSciNetGoogle Scholar
  11. 11.
    G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities [Russian translation], Inostrannaya Literatura, Moscow (1948).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • S. Ya. Yanchenko
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations