Advertisement

Ukrainian Mathematical Journal

, Volume 62, Issue 1, pp 114–122 | Cite as

Best m-term trigonometric approximation for the classes \( B_{p,{{\uptheta }}}^r \) of functions of low smoothness

  • S. A. Stasyuk
Article

We obtain an exact-order estimate for the best m-term trigonometric approximation of the Besov classes \( B_{p,{{\uptheta }}}^r \) of periodic functions of many variables of low smoothness in the space L q , 1 < p ≤ 2 < q < ∞.

Keywords

Periodic Function Absolute Convergence Minkowski Inequality Orthogonal Series Trigonometric Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. de Vore and V. N. Temlyakov, “Nonlinear approximation by trigonometric sums,” J. Four. Anal. Appl., 2, No. 1, 29–48 (1995).CrossRefGoogle Scholar
  2. 2.
    O. V. Besov, “Investigation of one family of functional spaces in connection with the theorems of imbedding and extension,” Tr. Mat. Inst. Akad. Nauk SSSR, 60, 42–61 (1961).zbMATHMathSciNetGoogle Scholar
  3. 3.
    S. M. Nikol’skii, “Inequalities for the entire functions of finite power and their application to the theory of differentiable functions of many variables,” Tr. Mat. Inst. Akad. Nauk SSSR, 38, 244–278 (1951).Google Scholar
  4. 4.
    P. I. Lizorkin, “Generalized Hölder spaces \( B_{p,{{\uptheta }}}^r \) and their relations with the Sobolev spaces L p (r),” Sib. Mat. Zh., 9, No. 5, 1127–1152 (1968).zbMATHMathSciNetGoogle Scholar
  5. 5.
    V. N. Temlyakov, “Greedy algorithm and L p (r)-term trigonometric approximation,” Constr. Approxim., 142, No. 4, 569–587 (1998).CrossRefMathSciNetGoogle Scholar
  6. 6.
    Yanjiea Jiang and Yongping Liu, “Average widths and optimal recovery of multivariate Besov classes in L p (R d),” J. Approxim. Theory, 102, No. 1, 155–170 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. S. Romanyuk, “Approximating characteristics of the isotropic classes of periodic functions of many variables,” Ukr. Mat. Zh., 61, No. 4, 513–523 (2009).CrossRefMathSciNetGoogle Scholar
  8. 8.
    A. S. Romanyuk and V. S. Romanyuk, “Trigonometric and orthoprojection widths for the classes of periodic functions of many variables,” Ukr. Mat. Zh., 61, No. 10, 1348–1366 (2009).CrossRefMathSciNetGoogle Scholar
  9. 9.
    S. B. Stechkin, “On the absolute convergence of orthogonal series,” Dokl. Akad. Nauk SSSR, 102, No. 2, 37–40 (1955).zbMATHMathSciNetGoogle Scholar
  10. 10.
    R. S. Ismagilov, “Widths of sets in linear normed spaces and the approximation of functions by trigonometric polynomials,” Usp. Mat. Nauk, 29, No. 3, 161–178 (1974).MathSciNetGoogle Scholar
  11. 11.
    V. E. Maiorov, “On the linear widths of Sobolev classes,” Dokl. Akad. Nauk SSSR, 243, No. 5, 1127–1130 (1978).MathSciNetGoogle Scholar
  12. 12.
    B. S. Kashin, “On the approximating properties of complete orthonormal systems,” Tr. Mat. Inst. Akad. Nauk SSSR, 172, 187–191 (1985).zbMATHMathSciNetGoogle Scholar
  13. 13.
    V. N. Temlyakov, “On the approximation of periodic functions of many variables,” Dokl. Akad. Nauk SSSR, 279, No. 2, 301–305 (1984).MathSciNetGoogle Scholar
  14. 14.
    É. S. Belinskii, “Approximation by a ‘floating’ system of exponents on the classes of smooth periodic functions,” Mat. Sb., 132, No. 1, 20–27 (1987).Google Scholar
  15. 15.
    É. S. Belinskii, “Approximation by a `floating’ system of exponents on the classes of periodic functions with bounded mixed derivative,” in: Investigations into the Theory of Functions of Many Real Variables [in Russian], Yaroslavl University, Yaroslavl (1988), pp. 16–33.Google Scholar
  16. 16.
    B. S. Kashin and V. N. Temlyakov, “On the best m-term approximations and the entropy of sets in the space L 1,” Mat. Zametki, 56, No. 5, 57–86 (1994).MathSciNetGoogle Scholar
  17. 17.
    A. S. Romanyuk, “On the best M-term trigonometric approximations for the Besov classes of periodic functions of many variables,” Izv. Ros. Akad. Nauk, Ser. Mat., 67, No. 2, 61–100 (2003).MathSciNetGoogle Scholar
  18. 18.
    N. P. Korneichuk, Extreme Problems in the Theory of Approximation [in Russian], Nauka, Moscow (1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • S. A. Stasyuk
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations