Advertisement

Ukrainian Mathematical Journal

, Volume 61, Issue 10, pp 1568–1577 | Cite as

On extension of some generalizations of quasiconformal mappings to a boundary

  • T. V. Lomako
Article

This work is devoted to the investigation of ring Q-homeomorphisms. We formulate conditions for a function Q(x) and the boundary of a domain under which every ring Q-homeomorphism admits a homeomorphic extension to the boundary. For an arbitrary ring Q-homeomorphism f: DD’ with QL 1(D); we study the problem of the extension of inverse mappings to the boundary. It is proved that an isolated singularity is removable for ring Q-homeomorphisms if Q has finite mean oscillation at a point.

Keywords

Neighborhood Versus QUASICONFORMAL Mapping Continuous Extension Beltrami Equation Arbitrary Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “General Beltrami equations and BMO,” Ukr. Math. Bull., 5, No. 3, 305–326 (2008).MathSciNetGoogle Scholar
  2. 2.
    V. Ryazanov, U. Srebro, and E. Yakubov, “On ring solutions of Beltrami equations,” J. Anal. Math., 96, 117–150 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “On Q-homeomorphisms,” Ann. Acad. Sci. Fenn. Ser. A1, 30, No. 1, 49–69 (2005).zbMATHMathSciNetGoogle Scholar
  4. 4.
    E. A. Sevost’yanov, “Theory of modules, capacities, and normal families of mappings admitting branching,” Ukr. Mat. Vestn., 4, No. 4, 582–604 (2007).MathSciNetGoogle Scholar
  5. 5.
    E. A. Sevost’yanov, “Liouville, Picard, and Sokhotskii theorems for ring mappings,” Ukr. Mat. Vestn., 5, No. 3, 366–381 (2008).MathSciNetGoogle Scholar
  6. 6.
    V. I. Ryazanov and R. R. Salimov, “Weakly flat spaces and boundaries in the theory of mappings,” Ukr. Mat. Vestn., 4, No. 2, 199–234 (2007).MathSciNetGoogle Scholar
  7. 7.
    A. Ignat’ev and V. Ryazanov, “Finite mean oscillation in the theory of mappings,” Ukr. Mat. Vestn., 2, No. 3, 395–417 (2005).zbMATHMathSciNetGoogle Scholar
  8. 8.
    C. J. Bishop, V. Ya. Gutlyanskii, O. Martio, and M. Vuorinen, “On conformal dilatation in space,” Int. J. Math. Math. Sci., 22, 1397–1420 (2003).Google Scholar
  9. 9.
    V. Ryazanov, U. Srebro, and E. Yakubov, “On convergence theory for Beltrami equations,” Ukr. Math. Bull., 5, No. 4, 524–535 (2008).MathSciNetGoogle Scholar
  10. 10.
    E. A. Sevost’yanov, “Removal of singularities and analogs of the Sokhotskii–Weierstrass theorem for Q-mappings,” Ukr. Mat. Zh., 61, No. 1, 116–126 (2009).MathSciNetGoogle Scholar
  11. 11.
    V. Gutlyanski, O. Martio, T. Sugava, and M. Vuorinen, “On the degenerate Beltrami equation,” Trans. Amer. Math. Soc., 357, No. 3, 875–900 (2005).CrossRefMathSciNetGoogle Scholar
  12. 12.
    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings with finite length distortion,” J. Anal. Math., 93, 215–236 (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    K. Kuratowski, Topology [Russian translation], Vol. 2, Mir, Moscow (1969).Google Scholar
  14. 14.
    F. W. Gehring, ”Quasiconformal mappings,” in: Complex Analysis and Its Applications, Vol. 2, International Atomic Energy Agency, Vienna (1976), pp. 213–268.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • T. V. Lomako
    • 1
  1. 1.Institute of Applied Mathematics and MechanicsUkrainian National Academy of SciencesDonetskUkraine

Personalised recommendations