Ukrainian Mathematical Journal

, Volume 61, Issue 10, pp 1541–1555 | Cite as

Schur convexity and Schur multiplicative convexity for a class of symmetric functions with applications

  • Wei-Feng Xia
  • Yu-Ming Chu
For x = (x 1, x 2, …, x n ) ∈ (0, 1 ] n and r ∈ { 1, 2, … , n}, a symmetric function F n (x, r) is defined by the relation
$$ {F_n}\left( {x,r} \right) = {F_n}\left( {{x_1},{x_2}, \ldots, {x_n};r} \right) = \sum\limits_{1{ \leqslant_1} < {i_2} \ldots {i_r} \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 - {x_{{i_j}}}}}{{{x_{{i_j}}}}}} }, $$
where i 1, i 2 ,… , i n are positive integers. This paper deals with the Schur convexity and Schur multiplicative convexity of F n (x, r). As applications, some inequalities are established by using the theory of majorization.


Symmetric Function Isoperimetric Inequality Mathematical Induction Analytic Inequality Linear Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Alzer, “A short proof of Ky Fan’s inequality,” Arch. Math. (Brno), 27B, 199–200 (1991).MathSciNetGoogle Scholar
  2. 2.
    E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin (1961).Google Scholar
  3. 3.
    P. S. Bullen, Handbook of Means and Their Inequalities, Kluwer, Dordrecht (2003).zbMATHGoogle Scholar
  4. 4.
    Y. M. Chu and X. M. Zhang, “Necessary and sufficient conditions such that extended mean values are Schur-convex or Schurconcave,” J. Math. Kyoto Univ., 48, No. 1, 229–238 (2008).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Y. M. Chu, X. M. Zhang, and G. D. Wang, “The Schur geometrical convexity of the extended mean values,” J. Convex Anal., 15, No. 4, 707–718 (2008).MathSciNetzbMATHGoogle Scholar
  6. 6.
    G. M. Constantine, “Schur-convex functions on the spectra of graphs,” Discrete Math., 45, No. 2–3, 181–188 (1985).MathSciNetGoogle Scholar
  7. 7.
    K. Z. Guan, “The Hamy symmetric function and its generalization,” Math. Inequal. Appl., 9, No. 4, 797–805 (2006).MathSciNetzbMATHGoogle Scholar
  8. 8.
    K. Z. Guan, “Schur-convexity of the complete symmetric function,” Math. Inequal. Appl., 9, No. 4, 567–576 (2006).MathSciNetzbMATHGoogle Scholar
  9. 9.
    K. Z. Guan, “Some properties of a class of symmetric functions,” J. Math. Anal. Appl., 336, No. 1, 70–80 (2007).CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    K. Z. Guan, “A class of symmetric functions for multiplicatively convex function,” Math. Inequal. Appl., 10, No. 4, 745–753 (2007).MathSciNetzbMATHGoogle Scholar
  11. 11.
    K. Z. Guan and J. H. Shen, “Schur-convexity for a class of symmetric functions and its applications,” Math. Inequal. Appl., 9, No. 2, 199–210 (2006).MathSciNetzbMATHGoogle Scholar
  12. 12.
    G. H. Hardy, J. E. Littlewood, and G. Pólya, “Some simple inequalities satisfied by convex functions,” Messenger Math., 58, 145–152 (1929).Google Scholar
  13. 13.
    F. K. Hwang and U. G. Rothblum, “Partition-optimization with Schur convex sum objective functions,” SIAM J. Discrete Math., 18, No. 3, 512–524 (2004/2005).CrossRefMathSciNetGoogle Scholar
  14. 14.
    F. K. Hwang, U. G. Rothblum, and L. Shepp, “Monotone optimal multipartitions using Schur convexity with respect to partial orders,” SIAM J. Discrete Math., 6, No. 4, 533–574 (1993).CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    W. D. Jiang, “Some properties of dual form of the Hamy’s symmetric function,” J. Math. Inequal., 1, No. 1, 117–125 (2007).MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York (1979).zbMATHGoogle Scholar
  17. 17.
    M. T. McGregor, “On some inequalities of Ky Fan and Wang-Wang,” J. Math. Anal. Appl., 180, No. 1, 182–188 (1993).CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    A. M. Mercer, “A short proof of Ky Fan’s arithmetic-geometric inequality,” J. Math. Anal. Appl., 204, No. 3, 940–942 (1996).CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    M. Merkle, “Convexity, Schur-convexity and bounds for the gamma function involving the digamma function,” Rocky Mountain J. Math., 28, No. 3, 1053–1066 (1998).CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    D. S. Mitrinovic, Analytic Inequalities, Springer, New York (1970).zbMATHGoogle Scholar
  21. 21.
    C. P. Niculescu, “Convexity according to the geometric mean,” Math. Inequal. Appl., 3, No. 2, 155–167 (2000).MathSciNetzbMATHGoogle Scholar
  22. 22.
    J. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, New York (1992).zbMATHGoogle Scholar
  23. 23.
    F. Qi, “A note on Schur-convexity of extended mean values,” Rocky Mountain J. Math., 35, No. 5, 1787–1793 (2005).CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    F. Qi, J. Sándor, S. S. Dragomir, and A. Sofo, “Note on the Schur-convexity of the extended mean values,” Taiwan. J. Math., 9, No. 3, 411–420 (2005).zbMATHGoogle Scholar
  25. 25.
    M. Shaked, J. G. Shanthikumar, and Y. L. Tong, “Parametric Schur convexity and arrangement monotonicity properties of partial sums,” J. Multivar. Anal., 53, No. 2, 293–310 (1995).CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    H. N. Shi, “Schur-convex functions related to Hadamard-type inequalities,” J. Math. Inequal., 1, No. 1, 127–136 (2007).MathSciNetzbMATHGoogle Scholar
  27. 27.
    H. N. Shi, S. H. Wu, and F. Qi, “An alternative note on the Schur-convexity of the extended mean values,” Math. Inequal. Appl., 9, No. 2, 219–224 (2006).MathSciNetzbMATHGoogle Scholar
  28. 28.
    C. Stepniak, “An effective characterization of Schur-convex functions with applications,” J. Convex Anal., 14, No. 1, 103–108 (2007).MathSciNetGoogle Scholar
  29. 29.
    C. Stepniak, “Stochastic ordering and Schur-convex functions in comparison of linear experiments,” Metrika, 36, No. 5, 291–298 (1989).CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    S. H. Wu, “Generalization and sharpness of the power means inequality and their applications,” J. Math. Anal. Appl., 312, No. 2, 637–652 (2005).CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    X. M. Zhang, “Optimization of Schur-convex functions,” Math. Inequal. Appl., 1, No. 3, 319–330 (1998).MathSciNetzbMATHGoogle Scholar
  32. 32.
    X. M. Zhang, “Schur-convex functions and isoperimetric inequalities,” Proc. Amer. Math. Soc., 126, No. 2, 461–470 (1998).CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • Wei-Feng Xia
    • 1
  • Yu-Ming Chu
    • 1
  1. 1.Huzhou Teachers CollegeHuzhouChina

Personalised recommendations