Advertisement

Ukrainian Mathematical Journal

, Volume 61, Issue 9, pp 1511–1528 | Cite as

On some systems of convolution-type first-order integrodifferential equations on the semiaxis

  • A. Kh. Khachatryan
  • Kh. A. Khachatryan
Article

We study a class of vector convolution-type integrodifferential equations on the semiaxis used for the description of various applied problems of mathematical physics. By using a special three-factor decomposition of the original mathematical integrodifferential operator, we prove the solvability of these equations in certain functional spaces.

Keywords

Vector Function Matrix Operator Integrodifferential Equation Fubini Theorem Physical Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Lifshits and L. M. Pitaevskii, Physical Kinetics [in Russian], Nauka, Moscow (1979).Google Scholar
  2. 2.
    J. D. Sargan, “The distribution of wealth,” Econometrica, No. 25, 568–590 (1957).Google Scholar
  3. 3.
    Kh. A. Khachatryan, “On some integrodifferential equations encountered in physical kinetics,” Izv. Akad. Nauk. Resp. Armen., Ser. Mat., 39, No. 3, 72–80 (2004).MathSciNetGoogle Scholar
  4. 4.
    A. V. Latyshev and A. A. Yushkanov, “Electron plasma in a semiinfinite metal in the presence of a variable electric field,” Zh. Vychisl. Mat. Mat. Fiz., 41, No. 8, 1229–1241 (2001).MathSciNetGoogle Scholar
  5. 5.
    A. Kh. Khachatryan and Kh. A. Khachatryan, “On the solvability of one boundary-value problem of physical kinetics,” Izv. Akad. Nauk. Resp. Armen., Ser. Mat., 41, No. 6, 65–74 (2004).MathSciNetGoogle Scholar
  6. 6.
    A. Kh. Khachatryan and Kh. A. Khachatryan, “On solvability of some integral-differential equation with sum-difference kernels,” Int. J. Pure Appl. Math. (India), 2, No. 1, 1–13 (2005).MathSciNetGoogle Scholar
  7. 7.
    A. Kh. Khachatryan and Kh. A. Khachatryan, “On the structure of solution of one integral-differential equation with completely monotonic kernel,” in: Proc. of the Internat. Conf. “Harmonic Analysis and Approximations” (2005), pp. 42–43.Google Scholar
  8. 8.
    A. Kh. Khachatryan and Kh. A. Khachatryan, “On the problem of solvability of an integrodifferential equation with almost sumdifference kernel,” Mat. Vyssh. Shkol., 2, No. 4, 26–31 (2006).Google Scholar
  9. 9.
    N. Wiener and N. Hopf, Über Eine Klasse Singularer Integral Eichungen Sitzig, Berlin (1931), pp. 696–706.Google Scholar
  10. 10.
    L. G. Arabadzhyan and N. B. Engibaryan, “Convolution equations and nonlinear functional equations,” Itogi VINITI, Ser. Mat. Anal. [in Russian], Vol. 22, VINITI, Moscow (1984), pp. 175–242.Google Scholar
  11. 11.
    N. B. Engibaryan and A. A. Arutyunyan, “Integral equations on a half line with difference kernels and nonlinear functional equations,” Mat. Sb., 97, 35–58 (1975).Google Scholar
  12. 12.
    N. B. Engibaryan and L. G. Arabadzhyan, “Some problems of factorization for integral convolution-type operators,” Differents. Uravn., 26, No. 8, 1442–1452 (1990).zbMATHMathSciNetGoogle Scholar
  13. 13.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, [in Russian], Nauka, Moscow (1981).zbMATHGoogle Scholar
  14. 14.
    I. P. Natanson, Theory of Functions of Real Variable [in Russian], Nauka, Moscow (1974).Google Scholar
  15. 15.
    G. M. Fikhtengol’ts, A Course of Differential and Integral Calculus [in Russian], Vol. 2, Nauka, Moscow (1966).Google Scholar
  16. 16.
    L. G. Arabadzhyan, “On one integral equation of the transport theory in inhomogeneous media,” Differents. Uravn., 23, No. 9, 1618–1622 (1987).zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. Kh. Khachatryan
    • 1
  • Kh. A. Khachatryan
    • 1
  1. 1.Institute of Mathematics, Armenian National Academy of SciencesErevanArmenia

Personalised recommendations