Ukrainian Mathematical Journal

, Volume 61, Issue 8, pp 1233–1249 | Cite as

A modular transformation for a generalized theta function with multiple parameters

  • S. Bhargava
  • M. S. Mahadeva Naika
  • M. C. Maheshkumar
We obtain a modular transformation for the theta function
$$ \sum\limits_{ - \infty }^\infty {\sum\limits_{ - \infty }^\infty {{q^{a\left( {{m^2} + mn} \right) + c{n^2} + \lambda m + \mu n + {\nu_\varsigma }Am + B{n_Z}Cm + Dn}}}, } $$
which enables us to unify and extend several modular transformations known in literature.


Simple Consequence Auxiliary Function Theta Function Simple Fact Function Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Bhargava, “Unification of the cubic analogues of Jacobian theta functions,” J. Math. Anal. Appl., 193, 543–558 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. D. Hirschhorn, F. G. Garvan, and J. M. Borwein, “Cubic analogues of the Jacobian theta functions θ(z, q) ,” Can. J., 45, 673–694 (1993).zbMATHMathSciNetGoogle Scholar
  3. 3.
    S. Bhargava and S. N. Fathima, “Unification of modular transformations for cubic theta functions,” N. Z. J. Math., 33, 121–127 (2004).zbMATHMathSciNetGoogle Scholar
  4. 4.
    S. Cooper, “Cubic theta functions,” J. Comput. Appl. Math., 160, 77–94 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    S. Bhargava and N. Anitha, “A triple product identity for the three–parameter cubic theta function,” Indian J. Pure Appl. Math., 36, No. 9, 471–479 (2005).zbMATHMathSciNetGoogle Scholar
  6. 6.
    C. Adiga, M. S. Mahadeva Naika, and J. H. Han, “General modular transformations for theta functions,” Indian J. Math., 49, No. 2, 239–251 (2007).zbMATHMathSciNetGoogle Scholar
  7. 7.
    C. Adiga, B. C. Berndt, S. Bhargava, and G. N. Watson, “Chapter 16 of Ramanujan’s second notebook, theta functions and qseries,” Mem. Amer. Math. Soc., 53, No. 315 (1985).MathSciNetGoogle Scholar
  8. 8.
    J. M. Borwein and P. B. Borwein, “A cubic counterpart of Jacobi’s identity and the AGM,” Trans. Amer. Math. Soc., 323, 691–701 (1991).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • S. Bhargava
    • 1
  • M. S. Mahadeva Naika
    • 2
  • M. C. Maheshkumar
    • 2
  1. 1.University of MysoreMysoreIndia
  2. 2.Bangalore UniversityBangaloreIndia

Personalised recommendations