Ukrainian Mathematical Journal

, Volume 61, Issue 1, pp 71–85 | Cite as

On one extremal problem of Pompeiu sets

  • L. V. Elets
  • P. A. Masharov

We determine upper bounds for the least radius of a ball in which a given set is a Pompeiu set (the set considered is a half right circular cone). The obtained estimates significantly improve known results.


Extremal Problem Integral Geometry Close Location Circular Cone Half Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Zalcman, “A bibliographic survey of Pompeiu problem,” in: B. Fuglede, M. Goldstein, W. Haussmann, et al. (editors), Approximation by Solutions of Partial Differential Equations, Springer (1992), pp. 185–194.Google Scholar
  2. 2.
    L. Zalcman, “Supplementary bibliography to ‘A bibliographic survey of Pompeiu problem’ in Radon transforms and tomography,” Contemp. Math., 278, 69–74 (2001).MathSciNetGoogle Scholar
  3. 3.
    S. A. Williams, “A partial solution of the Pompeiu problem,” Math. Ann., 223, 183–190 (1976).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. V. Volchkov and Vit. V. Volchkov, “New results in integral geometry,” Contemp. Math., 382, 417–432 (2005).MathSciNetGoogle Scholar
  5. 5.
    V. V. Volchkov and Vit. V. Volchkov, Geometric Aspects of the Mean Periodicity, Donetsk National University, Donetsk (2007).Google Scholar
  6. 6.
    V. V. Volchkov, Integral Geometry and Convolution Equations, Kluwer, Dordrecht (2003).zbMATHGoogle Scholar
  7. 7.
    C. A. Berenstein and R. Gay, “Le probleme de Pompeiu locale,” J. Anal. Math., 2, 133–166 (1989).MathSciNetGoogle Scholar
  8. 8.
    V. V. Volchkov, “On functions with zero integrals over cubes,” Ukr. Mat. Zh., 43, No. 6, 859–863 (1991).CrossRefMathSciNetGoogle Scholar
  9. 9.
    P. A. Masharov, “Extremal problems of sets with local Pompeiu property,” Dopov. Nats. Akad. Nauk Ukr., No. 7, 25–29 (2001).Google Scholar
  10. 10.
    P. A. Masharov, “Solution of a local version of the Pompeiu problem for the Reuleaux triangle,” Visn. Dnipropetrovs’k. Univ., Ser. Mat., Issue 6, 72–81 (2001).Google Scholar
  11. 11.
    P. A. Masharov, “On cylinders with local Pompeiu property,” Visn. Donets’k. Nats. Univ., Ser. A, Pryrod. Nauky, No. 1, 21–25 (2000).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • L. V. Elets
    • 1
  • P. A. Masharov
    • 2
  1. 1.Institute of Applied Mathematics and MechanicsUkrainian National Academy of SciencesDonetskUkraine
  2. 2.Donetsk National UniversityDonetskUkraine

Personalised recommendations