Advertisement

Ukrainian Mathematical Journal

, Volume 60, Issue 12, pp 1937–1954 | Cite as

Systems of equations of Kolmogorov type

  • H. P. Malyts’ka
Article

We consider one class of degenerate parabolic systems of equations of the type of diffusion equation with Kolmogorov inertia. For systems whose coefficients may depend only on the time variable, we construct a fundamental matrix of solutions of the Cauchy problem and obtain estimates for this matrix and all its derivatives.

Keywords

Cauchy Problem Fundamental Solution Diffusion Equation Parabolic System Fundamental Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. Éidel’man, S. D. Ivasyshen, and A. N. Kochubei, “Analytic methods in the theory of differential and pseudo-differential equations of parabolic type,” Operator Theory: Adv. Appl., 152 (2004).Google Scholar
  2. 2.
    S. Polidoro, “On a class of ultraparabolic operators of Kolmogorov–Fokker–Planck type,” Le Matematiche, 49, 53–105 (1994).zbMATHMathSciNetGoogle Scholar
  3. 3.
    C. Cinti, A. Pascucci, and S. Polidoro, “Pointwise estimates for solutions to a class of non-homogeneous Kolmogorov equations,” Math. Ann., 340, No. 2, 237–264 (2008).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    H. P. Malyts’ka, “Construction of a fundamental solution of the Cauchy problem for a diffusion equation with variable inertia,” Mat. Met. Fiz.-Mekh. Polya, 42, No. 3, 56–60 (1999).Google Scholar
  5. 5.
    H. P. Malyts’ka, “On the structure of a fundamental solution of the Cauchy problem for elliptic–parabolic equations that generalize diffusion equations with inertia,” Visn. Nats. Univ. “L’viv. Politekhnika,” No. 411, 221–228 (2000).Google Scholar
  6. 6.
    H. P. Malyts’ka, “On a fundamental solution of the Cauchy problem for a Kolmogorov-type parabolic equation of arbitrary order that is degenerate with respect to an arbitrary number of groups of variables,” Mat. Met. Fiz.-Mekh. Polya, 47, No. 4, 131–138 (2004).Google Scholar
  7. 7.
    R. Courant, Partial Differential Equations [Russian translation], Mir, Moscow (1964).zbMATHGoogle Scholar
  8. 8.
    S. D. Éidel’man, Parabolic Systems [in Russian], Nauka, Moscow (1964).Google Scholar
  9. 9.
    S. D. Ivasyshen and S. D. Éidel’man, “\( \overrightarrow {2b} \)-Parabolic systems,” in: Proceedings of the Seminar on Functional Analysis [in Russian], Issue 1, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (1968), pp. 3–175, 271–273.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • H. P. Malyts’ka
    • 1
  1. 1.Precarpathian National UniversityIvano-Frankivs’kUkraine

Personalised recommendations