Advertisement

Ukrainian Mathematical Journal

, Volume 60, Issue 12, pp 1901–1914 | Cite as

On the solvability of one class of parameterized operator inclusions

  • V. O. Kapustyan
  • P. O. Kas’yanov
  • O. P. Kohut
Article

We consider a class of parameterized operator inclusions with set-valued mappings of \( {\bar S_k} \) type. Sufficient conditions for the solvability of these inclusions are obtained and the dependence of the sets of their solutions on functional parameters is investigated. Examples that illustrate the results obtained are given.

Keywords

Banach Space Variational Inequality Naukova Dumka Functional Parameter Operator Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin (1984).zbMATHGoogle Scholar
  2. 2.
    J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston (1990).zbMATHGoogle Scholar
  3. 3.
    V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Reidel, Dordrecht (1986).zbMATHGoogle Scholar
  4. 4.
    M. Z. Zgurovskii, V. S. Mel’nik, and A. N. Novikov, Applied Methods for Analysis and Control of Nonlinear Processes and Fields [in Russian], Naukova Dumka, Kiev (2004).Google Scholar
  5. 5.
    G. E. Ladas and V. Lakshmikantham, Differential Equations in Abstract Spaces, Academic Press, New York (1972).Google Scholar
  6. 6.
    A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides [in Russian], Nauka, Moscow (1985).Google Scholar
  7. 7.
    A. A. Chikrii, Conflict-Controlled Processes [in Russian], Naukova Dumka, Kiev (1992).Google Scholar
  8. 8.
    J.-L. Lions, Methods for Solution of Nonlinear Boundary-Value Problems [Russian translation], Mir, Moscow (1972).Google Scholar
  9. 9.
    H. Gajewski, K. Gröger, and K. Zacharias, Nonlinear Operator Equations and Operator Differential Equations [Russian translation], Mir, Moscow (1978).Google Scholar
  10. 10.
    I. V. Skrypnik, Methods for Investigation of Nonlinear Elliptic Boundary-Value Problems [in Russian], Nauka, Moscow (1990).zbMATHGoogle Scholar
  11. 11.
    M. Z. Zgurovskii and V. S. Mel’nik, “Penalty method for variational inequalities with set-valued mappings. I,” Kiber. Sist. Analiz, No. 4, 57–69 (2000).Google Scholar
  12. 12.
    M. Z. Zgurovskii and V. S. Mel’nik, “Ky Fan inequality and operator inclusions in Banach spaces,” Kiber. Sist. Analiz, No. 2, 70–85 (2002).Google Scholar
  13. 13.
    M. Z. Zgurovskii, P. O. Kas’yanov, and V. S. Mel’nik, Operator Differential Inclusions and Variational Inequalities in Infinite-Dimensional Spaces [in Russian], Naukova Dumka, Kiev (2008).Google Scholar
  14. 14.
    V. S. Mel’nik, “Critical points of some classes of set-valued mappings,” Kiber. Sist. Analiz, No. 2, 87–98 (1997).Google Scholar
  15. 15.
    V. S. Mel’nik, “Multivariational inequalities and operator inclusions in Banach spaces with mappings of the class (S)+ ,Ukr. Mat. Zh., 52, No. 11, 1513–1523 (2000).zbMATHMathSciNetGoogle Scholar
  16. 16.
    V. S. Mel’nik, “Topological methods in the theory of operator inclusions in Banach spaces. I, II,” Ukr. Mat. Zh., 58, No. 2, 206–219 (2006); 58, No. 4, 573–595 (2006).CrossRefMathSciNetGoogle Scholar
  17. 17.
    V. I. Ivanenko and V. S. Mel’nik, Variational Methods in Control Problems for Systems with Distributed Parameters [in Russian], Naukova Dumka, Kiev (1998).Google Scholar
  18. 18.
    P. O. Kas’yanov and V. S. Mel’nik, “Faedo–Galerkin method for operator differential inclusions in Banach spaces with mappings of λ-pseudomonotone type,” Zb. Prats’ Inst. Mat. NAN Ukr., 2, No. 1, 103–126 (2005).Google Scholar
  19. 19.
    P. O. Kasyanov, V. S. Mel’nik, and V. V. Yasinsky, Evolution Inclusions and Inequalities in Banach Spaces withWλ-Pseudomonotone Mappings, Naukova Dumka, Kyiv (2007).Google Scholar
  20. 20.
    V. V. Zhikov, S. M. Kozlov, and O. L. Oleinik, Homogenization of Differential Operators [in Russian], Fizmatlit, Moscow (1993).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. O. Kapustyan
    • 1
  • P. O. Kas’yanov
    • 2
  • O. P. Kohut
    • 3
  1. 1.“KPI” National Technical UniversityKyivUkraine
  2. 2.Shevchenko Kyiv National UniversityKyivUkraine
  3. 3.Institute for Applied System AnalysisNational Academy of Sciences of Ukraine, Ministry of Education and Science of UkraineKyivUkraine

Personalised recommendations