Advertisement

Ukrainian Mathematical Journal

, Volume 60, Issue 9, pp 1448–1476 | Cite as

Spectrum and states of the BCS Hamiltonian with sources

  • D. Ya. Petrina
Article

We consider the BCS Hamiltonian with sources, as proposed by Bogolyubov and Bogolyubov, Jr. We prove that the eigenvectors and eigenvalues of the BCS Hamiltonian with sources can be exactly determined in the thermodynamic limit. Earlier, Bogolyubov proved that the energies per volume of the BCS Hamiltonian with sources and the approximating Hamiltonian coincide in the thermodynamic limit.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Ya. Petrina, “On Hamiltonians of quantum statistics and a model Hamiltonian in the theory of superconductivity,” Teor. Mat. Fiz., 4, No. 3, 394–411 (1970).zbMATHMathSciNetGoogle Scholar
  2. 2.
    D. Ya. Petrina and V. P. Yatsyshin, “On a model Hamiltonian in the theory of superconductivity,” Teor. Mat. Fiz., 10, No. 2, 283–299 (1972).Google Scholar
  3. 3.
    D. Ya. Petrina, “Spectrum and states of the BCS Hamiltonian in a finite domain. I. Spectrum,” Ukr. Mat. Zh., 52, No. 5, 667–690 (2000).CrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Ya. Petrina, “Spectrum and states of the BCS Hamiltonian in a finite domain. II. Spectra of excitations,” Ukr. Mat. Zh., 53, No. 8, 1080–1101 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. Ya. Petrina, “Spectrum and states of the BCS Hamiltonian in a finite domain. III. BCS Hamiltonian with mean-field interaction,” Ukr. Mat. Zh., 54, No. 11, 1486–1504 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    D. Ya. Petrina, “Model BCS Hamiltonian and approximating Hamiltonian in the case of infinite volume. IV. Two branches of their common spectra and states,” Ukr. Mat. Zh., 55, No. 2, 174–197 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. Ya. Petrina, “New second branch of the spectrum of the BCS Hamiltonian and a ‘pseudo-gap,'” Ukr. Mat. Zh., 57, No. 11, 1508–1533 (2005).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Ya. Petrina, Mathematical Foundations of Quantum Statistical Mechanics, Kluwer, Dordrecht (1995).Google Scholar
  9. 9.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev., 108, 1175–1204 (1957).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    L. N. Cooper, “Bound electron pairs in a degenerate Fermi gas,” Phys. Rev., 104, 1189–1190 (1956).zbMATHCrossRefGoogle Scholar
  11. 11.
    N. N. Bogolyubov, “On a model Hamiltonian in the theory of superconductivity,” in: N. N. Bogolyubov, Selected Papers [in Russian], Vol. 3, Naukova Dumka, Kiev (1970), pp. 110–173.Google Scholar
  12. 12.
    N. N. Bogolyubov, Jr., A Method for Investigation of a Model Hamiltonian [in Russian], Nauka, Moscow (1974).Google Scholar
  13. 13.
    N. N. Bogolyubov, D. N. Zubarev, and Yu. A. Tserkovnikov, “Asymptotically exact solution for a model Hamiltonian in the theory of superconductivity,” in: N. N. Bogolyubov, Selected Papers [in Russian], Vol. 3, Naukova Dumka, Kiev (1970), pp. 98–109.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • D. Ya. Petrina

There are no affiliations available

Personalised recommendations