Advertisement

Ukrainian Mathematical Journal

, Volume 60, Issue 6, pp 977–984 | Cite as

On Kolmogorov-type inequalities for fractional derivatives of functions of two variables

  • V. F. Babenko
  • S. A. Pichugov
Brief Communications
  • 39 Downloads

We prove a new exact Kolmogorov-type inequality estimating the norm of a mixed fractional-order derivative (in Marchaud's sense) of a function of two variables via the norm of the function and the norms of its partial derivatives of the first order.

Keywords

Fractional Order Fractional Derivative Unbounded Operator Lebesgue Measure Zero Kolmogorov Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals, Derivatives of Fractional Orders, and Some Their Applications [in Russian], Nauka i Tekhnika, Minsk (1987).Google Scholar
  2. 2.
    A. Marchaud, “Sur les derivées et sur les différences des fonctions de variables réelles,” J. Math. Pures Appl., 6, 337–425 (1927).Google Scholar
  3. 3.
    V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, and S. A. Pichugov, Inequalities for Derivatives and Their Applications [in Russian], Naukova Dumka, Kiev (2003).Google Scholar
  4. 4.
    V. V. Arestov and V. N. Gabushin, “Approximation of unbounded operators by bounded operators,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 11, 44–66 (1995).Google Scholar
  5. 5.
    V. V. Arestov, “Approximation of unbounded operators by bounded operators and related extremal problems,” Usp. Mat. Nauk, 51, No. 6, 88–124 (1996).MathSciNetGoogle Scholar
  6. 6.
    V. F. Babenko and M. S. Churilova, “On the Kolmogorov-type inequalities for the derivatives of fractional order,” Visn. Dnipropetrovs'k Univ., Ser. Mat., Issue 6, 16–20 (2001).Google Scholar
  7. 7.
    S. P. Geisberg, “Generalization of the Hadamard inequality,” Sb. Nauch. Tr. Leningr. Mekh. Inst., 50, 42–54 (1965).MathSciNetGoogle Scholar
  8. 8.
    V. V. Arestov, “Inequalities for fractional derivatives on the half-line,” in: Approximation Theory, Banach Center, PWN, Warsaw (1979), pp. 19–34.Google Scholar
  9. 9.
    V. F. Babenko and M. S. Churilova, “On the Kolmogorov-type inequalities for fractional derivatives,” East J. Approxim., 8, No. 4, 437–446 (2002).zbMATHMathSciNetGoogle Scholar
  10. 10.
    G. G. Magaril-Il'jaev and V. M. Tihomirov, “On the Kolmogorov inequality for fractional derivatives on the half-line,” Anal. Math., 7, No. 1, 37–47 (1981).CrossRefMathSciNetGoogle Scholar
  11. 11.
    V. N. Konovalov, “Exact inequalities for the norms of functions, third partial and second mixed derivatives,” Mat. Zametki, 23, No. 1, 67–78 (1978).zbMATHMathSciNetGoogle Scholar
  12. 12.
    A. P. Buslaev and I. M. Tikhomirov, “On the inequalities for derivatives in many-dimensional case,” Mat. Zametki, 25, No. 1, 59–74 (1979).MathSciNetGoogle Scholar
  13. 13.
    O. A. Timoshin, “Exact inequalities between the norms of partial derivatives of the second and third orders,” Dokl. Ros. Akad. Nauk, 344, No. 1, 20–22 (1995).MathSciNetGoogle Scholar
  14. 14.
    V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, “Multivariate inequalities of Kolmogorov type and their applications,” in: G. Nirnberger, J. W. Schmidt, and G. Walz (editors), Multivariate Approximation and Splines, Birkhäuser, Basel (1997), pp. 1–12.Google Scholar
  15. 15.
    V. F. Babenko, “On the exact Kolmogorov-type inequalities for functions of two variables,” Dop. Nats. Akad. Nauk Ukr., No. 5, 7–11 (2000).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. F. Babenko
    • 1
    • 2
  • S. A. Pichugov
    • 1
    • 3
  1. 1.Dnepropetrovsk National UniversityDnepropetrovskUkraine
  2. 2.Institute of Applied Mathematics and MechanicsUkrainian National Academy of SciencesDonetskUkraine
  3. 3.Dnepropetrovsk National University of Engineers of the Railroad TransportDnepropetrovskUkraine

Personalised recommendations