Ukrainian Mathematical Journal

, Volume 60, Issue 2, pp 211–220 | Cite as

Controllability in oscillation dynamical systems

  • M. Ilolov
  • A. A. Él’nazarov


We consider the problem of controllability in oscillation dynamical systems. A solution of the local control problem is obtained for one class of systems of differential equations. An example of application of the main results is given.


Hamiltonian System Invariant Manifold Hamiltonian Function Invariant Torus Exponential Dichotomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Kolmogorov, “On conservation of conditionally periodic motions for a small change in the Hamiltonian function,” Dokl. Akad. Nauk SSSR, 98, No. 4, 527–530 (1954).zbMATHMathSciNetGoogle Scholar
  2. 2.
    V. I. Arnol’d, “Small denominators. The proof of the Kolmogorov theorem on the conservation of conditionally periodic motions for a small change in the Hamiltonian function,” Usp. Mat. Nauk, 18, No. 5, 13–40 (1963).Google Scholar
  3. 3.
    V. I. Arnol’d, “Small denominators and the problem of stability of motion in classical and celestial mechanics,” Usp. Mat. Nauk, 18, No. 6, 91–192 (1963).Google Scholar
  4. 4.
    J. Moser, “Convergent series expansions for quasi-periodic motions,” Math. Ann., 169, 136–176 (1969).CrossRefGoogle Scholar
  5. 5.
    J. K. Moser, Lectures on Hamiltonian Systems, Courant Institute of Mathematical Sciences, New York (1969).Google Scholar
  6. 6.
    N. M. Krylov and N. N. Bogolyubov, An Introduction to Nonlinear Mechanics [in Russian], Academy of Sciences of Ukr. SSR, Kiev (1937).Google Scholar
  7. 7.
    N. N. Bogolyubov, Yu. A. Mitropol’skii, and A. M. Samoilenko, Method of Accelerated Convergence in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1969).Google Scholar
  8. 8.
    A. M. Samoilenko, “Green function of a linear extension of a dynamical system on a torus, conditions of its uniqueness, and properties that follow from these conditions,” Ukr. Mat. Zh., 32, No. 6, 791–797 (1980).CrossRefGoogle Scholar
  9. 9.
    A. M. Samoilenko, Elements of the Mathematical Theory of Multifrequency Oscillations. Invariant Tori [in Russian], Moscow, Nauka (1987).Google Scholar
  10. 10.
    A. M. Samoilenko, Investigation of a Dynamical System in the Neighborhood of a Quasiperiodic Trajectory [in Russian], Preprint No. 90.35, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1990).Google Scholar
  11. 11.
    A. M. Samoilenko and M. Ilolov, “Invariant tori of differential equations in a Banach space,” Ukr. Mat. Zh., 44, No. 1, 93–100 (1998).MathSciNetGoogle Scholar
  12. 12.
    M. Ilolov and A. Él’nazarov, “Invariant tori of differential equations with delay in a Banach space,” Dokl. Akad. Nauk Respub. Tadzhikistan, 49, No. 2, 101–105 (2006).Google Scholar
  13. 13.
    E. M. Bollt and J. D. Meiss, “Breakup of invariant tori for the four-dimensional semi-standard map,” Physica D, 66, Issues 3–4, 282–297 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Berretti and S. Marmi, “Standard map at complex rotation numbers: creation of natural boundaries,” Phys. Rev. Lett., 68, 1443–1446 (1992).CrossRefGoogle Scholar
  15. 15.
    R. S. MacKay, J. D. Meiss, and J. Stark, “Converse KAM theory for symplectic twist maps,” Nonlinearity, 2, 555–570 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    C. Chandre and H. R. Jausin, “Renormalization-group analysis for the transition to chaos in Hamiltonian systems,” Phys. Rep., 365, Issue 1 (2002).Google Scholar
  17. 17.
    E. Stephen, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York (2003).zbMATHGoogle Scholar
  18. 18.
    E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett., 64, No. 11, 1196–1199 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    T. Shinbrot, C. Grebogi, E. Ott, and J. A. Yorke, “Using small perturbations to control chaos,” Nature, 363, 411–417 (1993).CrossRefGoogle Scholar
  20. 20.
    D. J. Gauthier, “Controlling chaos,” Amer. J. Phys., 71, 750 (2003).CrossRefGoogle Scholar
  21. 21.
    C. Chandre, G. Ciraolo, F. Doevit, et al., “Channelling chaos by building barriers,” Phys. Rev. Lett., 94, 074101 (2005).Google Scholar
  22. 22.
    A. Macor, F. Doveil, C. Chandre, et al., Channelling Chaotic Transport in a Wave-Particle Experiment, Arch. at (2006).
  23. 23.
    F. Doveil, K. Auhmani, A. Macor, and D. Guyomarc’h, “Experimental observation of resonance overlap responsible for Hamiltonian chaos,” Phys. Plasma, 12, 010702 (2005).Google Scholar
  24. 24.
    S. Huang, C. Chandre, and T. User, “Reducing multiphoton ionization in a linearly polarized microwave field by local control,” Phys. Rev. A., 74, 053408 (2006).Google Scholar
  25. 25.
    C. Chandre, M. Vittot, G. Ciraolo, et al., “Control of stochasticity in magnetic field lines,” Nucl. Fusion, 46, 33–45 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • M. Ilolov
    • 1
  • A. A. Él’nazarov
    • 1
  1. 1.Academy of Sciences of TajikistanDushanbeTajikistan

Personalised recommendations