Advertisement

Ukrainian Mathematical Journal

, Volume 60, Issue 2, pp 191–198 | Cite as

General conditions for the unique solvability of initial-value problem for nonlinear functional differential equations

  • N. Z. Dil’na
  • A. M. Ronto
Article

Abstract

We establish general conditions for the unique solvability of the Cauchy problem for systems of nonlinear functional differential equations.

Keywords

Linear Operator Cauchy Problem Functional Differential Equation Unique Solvability Natural Partial Ordering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the Theory of Functional Differential Equations [in Russian], Moscow, Nauka (1991).zbMATHGoogle Scholar
  2. 2.
    E. Bravyi, R. Hakl, and A. Lomtatidze, “Optimal conditions for unique solvability of the Cauchy problem for first-order linear functional differential equations,” Czech. Math. J., 52, No. 3, 513–530 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    R. Hakl, A. Lomtatidze, and B. Půža, “New optimal conditions for unique solvability of the Cauchy problem for first-order linear functional differential equations,” Math. Bohem., 127, No. 4, 509–524 (2002).zbMATHMathSciNetGoogle Scholar
  4. 4.
    A. N. Ronto, “Exact solvability conditions for the Cauchy problem for systems of first-order linear functional differential equations determined by (σ1, σ2, …, σn; τ)-positive operators,” Ukr. Math. J., 55, No. 11, 1853–1884 (2003).CrossRefMathSciNetGoogle Scholar
  5. 5.
    N. Z. Dil’naya and A. N. Ronto, “Some new conditions for the solvability of the Cauchy problem for systems of linear functional differential equations,” Ukr. Math. J., 56, No. 7, 1033–1053 (2004).MathSciNetGoogle Scholar
  6. 6.
    A. Rontó, “On the initial-value problem for systems of linear differential equations with argument deviations,” Miskolc Math. Notes, 6, No. 1, 105–127 (2005).zbMATHMathSciNetGoogle Scholar
  7. 7.
    R. Hakl, A. Lomtatidze, and B. Půža, “On nonnegative solutions of first-order scalar functional differential equations,” Mem. Different. Equat. Math. Phys., 23, 51–84 (2001).zbMATHGoogle Scholar
  8. 8.
    A. M. Samoilenko, N. Z. Dil’na, and A. M. Ronto, “Solvability of the Cauchy problem for linear integro-differential equations with transformed argument,” Nelin. Kolyvannya, 8, No. 3, 388–403 (2005).MathSciNetGoogle Scholar
  9. 9.
    M. A. Krasnosel’skii, E. A. Lifshits, Yu. V. Pokornyi, and V. Ya. Stetsenko, “Positive-invertible linear operators and solvability of nonlinear equations,” Dokl. Akad. Nauk Tadzhik. SSR, 17, No. 1, 12–14 (1974).Google Scholar
  10. 10.
    M. A. Krasnosel’skii and P. P. Zabreiko, Geometric Methods of Nonlinear Analysis [in Russian], Nauka, Moscow (1975).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • N. Z. Dil’na
    • 1
  • A. M. Ronto
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations