Advertisement

Ukrainian Mathematical Journal

, Volume 60, Issue 1, pp 114–120 | Cite as

An infinite-dimensional Borsuk-Ulam-type generalization of the Leray-Schauder fixed-point theorem and some applications

  • A. K. Prykarpats’kyi
Article

Abstract

A generalization of the classical Leray-Schauder fixed-point theorem based on the infinite-dimensional Borsuk-Ulam-type antipode construction is proposed. A new nonstandard proof of the classical Leray-Schauder fixed-point theorem and a study of the solution manifold of a nonlinear Hamilton-Jacobi-type equation are presented.

Keywords

Banach Space Nonlinear Functional Analysis Ulam Theorem Solution Manifold Linear Continuous Projector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Zeidler, Nonlinear Functional Analysis and Its Applications, Springer, Berlin-Heidelberg (1986).zbMATHGoogle Scholar
  2. 2.
    N. K. Prykarpatska and E. Wachnicki, The Cartan-Monge Geometric Approach to the Characteristics Method and Application to the Hamilton-Jacobi Type Equations, Preprint ICTP, Trieste (2007).Google Scholar
  3. 3.
    A. M. Samoilenko, Elements of Mathematical Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1987).Google Scholar
  4. 4.
    J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Dover (2006).Google Scholar
  5. 5.
    J. Dugundji and A. Granas, Fixed-Point Theory, PWN, Warszawa (1981).Google Scholar
  6. 6.
    L. Górniewicz, Topological Fixed-Point Theory of Multivalued Mappings, Kluwer, Dordrecht (1999).zbMATHGoogle Scholar
  7. 7.
    K. Goebel, W. A. Kirk, et al., Topics in Metric Fixed-Point Theory, Cambridge University Press, Cambridge (1990).zbMATHGoogle Scholar
  8. 8.
    A. N. Kolmogorov and S. V. Fomin, Introduction to Functional Analysis [in Russian], Nauka, Moscow (1987).Google Scholar
  9. 9.
    L. Nirenberg, Topics in Nonlinear Functional Analysis, AMS, Providence, RI (2001).zbMATHGoogle Scholar
  10. 10.
    A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems [in Russian], Nauka, Moscow (1974).Google Scholar
  11. 11.
    B. D. Gelman, “An infinite-dimensional version of the Borsuk-Ulam theorem,” Funkts. Anal. Prilozhen., 38, No. 4, 1–5 (2004).MathSciNetGoogle Scholar
  12. 12.
    W. Rudin, Functional Analysis, McGraw-Hill, New York (1991).zbMATHGoogle Scholar
  13. 13.
    J. Andres and L. Górniewicz, Topological Fixed-Point Principles for Boundary-Value Problems, Kluwer, Dordrecht (2003).zbMATHGoogle Scholar
  14. 14.
    F. Browder, “On a generalization of the Schauder fixed-point theorem,” Duke Math. J., 26, 291–303 (1959).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    B. D. Gelman, “Borsuk-Ulam theorem in infinite-dimensional Banach spaces,” Mat. Sb., 103, No. 1, 83–92 (2002).MathSciNetGoogle Scholar
  16. 16.
    A. K. Prykarpatsky, A Borsuk-Ulam Type Generalization of the Leray-Schauder Fixed-Point Theorem, Preprint ICTP, Trieste (2007).Google Scholar
  17. 17.
    A. K. Prykarpatsky, Int. Conf. “Top. Theory of Fixed and Periodic Points” (July 22–28, 2007), Held Math. Res. and Conf. Center Bedlewo near Poznan, Poland.Google Scholar
  18. 18.
    A. K. Prykarpatsky, Int. Conf. “Topological Methods, Different. Equat. and Dynam. Systems”, Dedicated to the 65th Birthday of Professor Massimo Furi (June 13–16, 2007, Firenze, Italy).Google Scholar
  19. 19.
    E. Michael, “Continuous selections. I,” Ann. Math., 63, No. 2, 361–382 (1956).CrossRefMathSciNetGoogle Scholar
  20. 20.
    Z. Dzedzej, “Equivariant selections and approximations,” Top. Meth. Nonlin. Analysis, 25–31 (1997).Google Scholar
  21. 21.
    J. Blatter, P. D. Morris, and D. E. Wulbert, “Continuity of the set-valued metric projections,” Math. Ann., 178, No. 1, 12–24 (1968).zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    B. Brosowski and F. Deutsch, “Radial continuity of set-valued metric projections,” J. Approxim. Theory, 11, No. 3, 236–253 (1974).zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    N. K. Prykarpatska, D. L. Blackmore, A. K. Prykarpatsky, and M. Pytel-Kudela, “On the inf-type extremality solutions to Hamilton-Jacobi equations and some generalizations,” Miskolc Math. Notes, 4, No. 2, 153–176 (2003).MathSciNetGoogle Scholar
  24. 24.
    R. I. Wheeden and A. Zygmund, “Measure and integral,” in: Introduction to Real Analysis, Marcel Dekker, New York-Basel (1977).Google Scholar
  25. 25.
    V. P. Maslov, Asymptotic Methods for the Solution of Pseudodifferential Equations [in Russian], Nauka, Moscow (1976).Google Scholar
  26. 26.
    S. N. Kruzhkov, “Generalized solutions of nonlinear equations of the first order with many independent variables, I,” Mat. Sb., 70, No. 3, 395–415 (1966).MathSciNetGoogle Scholar
  27. 27.
    S. N. Kruzhkov, “Generalized solutions of nonlinear equations of the first order with many independent variables, II,” Mat. Sb., 70(114), No. 3, 109–134 (1967).Google Scholar
  28. 28.
    A. M. Samoilenko, A. K. Prykarpats’kyi and V. H. Samoilenko, “Lyapunov-Schmidt approach to studying homoclinic splitting in weakly perturbed Lagrangian and Hamiltonian systems,” Ukr. Mat. Zh., 55, No. 1, 82–92 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • A. K. Prykarpats’kyi
    • 1
  1. 1.Institute of Applied Problems in Mechanics and MathematicsUkrainian National Academy of SciencesLvivUkraine

Personalised recommendations