Advertisement

Connections to fixed points and Sil’nikov saddle-focus homoclinic orbits in singularly perturbed systems

  • F. Battelli
  • K. J. Palmer
Article
  • 47 Downloads

Abstract

We consider a singularly perturbed system depending on two parameters with two (possibly the same) normally hyperbolic center manifolds. We assume that the unperturbed system has an orbit that connects a hyperbolic fixed point on one center manifold to a hyperbolic fixed point on the other. Then we prove some old and new results concerning the persistence of these connecting orbits and apply the results to find examples of systems in dimensions greater than three that possess Sil’nikov saddle-focus homoclinic orbits.

Keywords

Tangent Space Invariant Manifold Unstable Manifold Homoclinic Orbit Stable Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Battelli and K. J. Palmer, “Singular perturbations, transversality, and Sil’nikov saddle focus homoclinic orbits,” J. Dynam. Different. Equat., 15, 357–425 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    P. Szmolyan, “Transversal heteroclinic and homoclinic orbits in singular perturbation problems,” J. Different. Equat., 92, 252–281 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    W.-J. Beyn and M. Stiefenhofer, “A direct approach to homoclinic orbits in the fast dynamics of singularly perturbed systems,” J. Dynam. Different. Equat., 99, 671–709 (1999).CrossRefMathSciNetGoogle Scholar
  4. 4.
    F. Battelli and K. J. Palmer, “Heteroclinic connections in singularly perturbed systems,” Disc. Cont. Dynam. Syst. (to appear).Google Scholar
  5. 5.
    F. Battelli and K. J. Palmer, “Transverse intersection of invariant manifolds in singular systems,” J. Different. Equat., 177, 77–120 (2001).CrossRefMathSciNetGoogle Scholar
  6. 6.
    L. P. Sil’nikov, “A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type,” Mat. Sb., 10, 91–102 (1970).CrossRefMathSciNetGoogle Scholar
  7. 7.
    B. Deng, “On Sil’nikov’s homoclinic-saddle-focus theorem,” J. Different. Equat., 102, 305–329 (1993).zbMATHCrossRefGoogle Scholar
  8. 8.
    S. P. Hastings, “Single and multiple pulse waves for FitzHugh Nagumo equation,” SIAM J. Appl. Math., 42, 247–260 (1982).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    B. Deng and G. Hines, “Food chain chaos due to Sil’nikov’s orbits,” Chaos, 12, 533–538 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Z. C. Feng and S. Wiggins, “On the existence of chaos in a class of two degree of freedom, damped, parametrically forced mechanical systems with broken O(2) symmetry,” Z. Angew. Math. Phys., 44, 201–248 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. A. Rodriguez, “Bifurcation to homoclinic connections of the focus-saddle type,” Arch. Ration. Mech. Anal., 93, 81–90 (1986).zbMATHCrossRefGoogle Scholar
  12. 12.
    F. Battelli and K. J. Palmer, “A remark about Sil’nikov saddle-focus homoclinic orbits” (to appear).Google Scholar
  13. 13.
    F. Fenichel, “Geometric singular perturbation theory for ordinary differential equations,” J. Different. Equat., 31, 53–98 (1979).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    K. Sakamoto, “Invariant manifolds in singular perturbation problems for ordinary differential equations,” Proc. Roy. Soc. Edinburgh A, 116, 45–78 (1990).zbMATHMathSciNetGoogle Scholar
  15. 15.
    F. Battelli and M. Fečkan, “Global centre manifolds in singular systems,” Nonlinear Different. Equat. Appl., 3, 19–34 (1996).CrossRefGoogle Scholar
  16. 16.
    R. A. Johnson and G. R. Sell, “Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems,” J. Different. Equat., 41, 262–288 (1981).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    J. K. Hale, “Introduction to dynamic bifurcation,” Bifurcation Theory Appl. Lect. Notes Math., 1057, 106–151 (1984).MathSciNetGoogle Scholar
  18. 18.
    K. J. Palmer, “Transverse heteroclinic orbits and Cherry’s example of a nonintegrable Hamiltonian system,” J. Different. Equat., 65, 321–360 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    K. J. Palmer, “Existence of a transverse homoclinic point in a degenerate case,” Rocky Mountain J. Math., 20, 1099–1118 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    K. J. Palmer, “Exponential dichotomies and transversal homoclinic points,” J. Different. Equat., 55, 225–256 (1984).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    H. Kokubu, K. Mischaikow, and H. Oka, “Existence of infinitely many connecting orbits in a singularly perturbed ordinary differential equation,” Nonlinearity, 9, 1263–1280 (1996).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • F. Battelli
    • 1
  • K. J. Palmer
    • 2
  1. 1.Marche Polytechnic UniversityAnconaItaly
  2. 2.National Taiwan UniversityTaipeiTaiwan

Personalised recommendations