Advertisement

Ukrainian Mathematical Journal

, 59:1840 | Cite as

Separately continuous mappings with values in nonlocally convex spaces

  • O. O. Karlova
  • V. K. Maslyuchenko
Article

Abstract

We prove that a collection (X, Y, Z) is a Lebesgue triple if X is a metrizable space, Y is a perfectly normal space, and Z is a strongly σ-metrizable topological vector space with stratification (Z m) m = 1 , where, for every m ∈ ℕ, Z m is a closed, metrizable, separable subspace of Z that is arcwise connected and locally arcwise connected.

Keywords

Topological Space Normal Space Topological Vector Space Metrizable Space Baire Classification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Lebesgue, “Sur l’approximation des fonctions,” Bull. Sci. Math., 22, 278–287 (1898).Google Scholar
  2. 2.
    W. Rudin, “Lebesgue first theorem,” in: Mathematical Analysis and Applications, Part B, Academic Press, New York (1981), pp. 741–747.Google Scholar
  3. 3.
    V. K. Maslyuchenko, O. V. Mykhailyuk, and O. V. Sobchuk, “Investigation of separately continuous mappings,” in: Proceedings of the International Mathematical Conference Dedicated to the Memory of Hans Hahn [in Ukrainian], Ruta, Chernivtsi (1995), pp. 192–246.Google Scholar
  4. 4.
    A. K. Kalancha and V. K. Maslyuchenko, “Baire classification of vector-valued separately continuous functions on products with finite-dimensional multiplier,” Zb. Nauk. Pr. Kam’yanets’-Podil’s’k. Ped. Univ., Ser. Fiz.-Mat. (Mat.), 4, 43–46 (1998).Google Scholar
  5. 5.
    A. K. Kalancha and V. K. Maslyuchenko, “Lebesgue-Čech dimension and Baire classification of vector-valued separately continuous mappings,” Ukr. Mat. Zh., 55, No. 11, 1596–1599 (2003).MathSciNetGoogle Scholar
  6. 6.
    T. O. Banakh, “(Metrically) quarter-stratifiable spaces and their applications,” Mat. Stud., 18, No. 1, 10–28 (2002).zbMATHMathSciNetGoogle Scholar
  7. 7.
    O. O. Karlova, “First functional Lebesgue class and Baire classification of separately continuous mappings,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 191–192, 52–60 (2004).Google Scholar
  8. 8.
    V. K. Maslyuchenko and A. M. Plichko, “On one family of topologies on the space ℓp,” Mat. Met. Fiz.-Mekh. Polya, 35, 194–198 (1992).Google Scholar
  9. 9.
    M. Fosgerau, “When are Borel functions Baire functions?” Fund. Math., 143, 137–152 (1993).zbMATHMathSciNetGoogle Scholar
  10. 10.
    O. O. Karlova and V. V. Mykhailyuk, “Uniform limit of mappings of the first Baire class and Baire classification of mappings of the first Lebesgue class,” in: Abstracts of Pidstryhach Conference of Young Scientists on Contemporary Problems in Mechanics and Mathematics [in Ukrainian], Lviv (2005), pp. 202–203.Google Scholar
  11. 11.
    O. O. Karlova and V. V. Mykhailyuk, “Functions of the first Baire class with values in metrizable spaces,” Ukr. Mat. Zh., 58, No. 4, 568–572 (2006).zbMATHCrossRefGoogle Scholar
  12. 12.
    S. Banach, A Course of Functional Analysis [in Ukrainian], Radyans’ka Shkola, Kyiv (1948).Google Scholar
  13. 13.
    R. Engelking, General Topology [Russian translation], Mir, Moscow (1986).Google Scholar
  14. 14.
    O. O. Karlova, “Baire classification of mappings with values in subsets of finite-dimensional spaces,” Nauk. Visn. Cherniv. Univ., Ser. Mat., Issue 239, 59–65 (2005).Google Scholar
  15. 15.
    V. K. Maslyuchenko, Separately Continuous Functions and Köthe Spaces [in Ukrainian], Doctoral-Degree Thesis (Physics and Mathematics), Chernivtsi (1999).Google Scholar
  16. 16.
    V. K. Maslyuchenko, O. V. Maslyuchenko, and V. V. Mykhailyuk, “Paracompactness and Lebesgue classification,” Mat. Met. Fiz.-Mekh. Polya, 47, No. 2, 65–72 (2004).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • O. O. Karlova
    • 1
  • V. K. Maslyuchenko
    • 1
  1. 1.Chernivtsi National UniversityChernivtsiUkraine

Personalised recommendations