Ukrainian Mathematical Journal

, Volume 59, Issue 9, pp 1408–1416 | Cite as

On Schur classes for modules over group rings

  • N. N. Semko
  • V. A. Chupordya


We consider the problem of coupling between a quotient module A/C A (G) and a submodule ARG), where G is a group, R is a ring, and A is an RG-module; C A (G) can be considered as an analog of the center of the group, and the submodule ARG) can be considered as an analog of the derived subgroup of the group.


Group Ring Sylow Subgroup Quotient Group Free Subgroup Dedekind Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Schur, “Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen,” J. Reine Angew. Math., 127, 20–50 (1904).Google Scholar
  2. 2.
    Ya. D. Polovitskii, “Locally extreme and layer-extreme groups,” Mat. Sb., 58, 685–694 (1962).MathSciNetGoogle Scholar
  3. 3.
    S. Franciosi, F. de Giovanno, and L. A. Kurdachenko, “The Schur property and groups with uniform conjugate classes,” J. Algebra, 174, 823–847 (1995).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. V. Kirichenko, L. A. Kurdachenko, and N. V. Polyakov, “On certain finitary module,” in: Algebraic Structures and Their Applications: Proceedings of the Ukrainian Mathematical Congress-2001, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev (2002), pp. 283–296.Google Scholar
  5. 5.
    E. Matlis, Cotorsion Modules, American Mathematical Society, Providence, RI (1964).Google Scholar
  6. 6.
    L. A. Kurdachenko, J. Otal, and I. Ya. Subbotin, Groups with Prescribed Quotient Groups and Associated Module Theory, World Scientific, New Jersey (2002).zbMATHGoogle Scholar
  7. 7.
    A. I. Mal’tsev, “On groups of finite rank,” Mat. Sb., 22, No. 2, 351–352 (1948).Google Scholar
  8. 8.
    A. I. Mal’tsev, “On some classes of infinite solvable groups,” Mat. Sb., 28, No. 3, 567–588 (1951).Google Scholar
  9. 9.
    D. J. S. Robinson, Infinite Soluble and Nilpotent Groups, Queen Mary College, London (1968).Google Scholar
  10. 10.
    L. A. Kurdachenko and H. Smith, “Groups with the weak maximal condition for non-subnormal subgroups,” Ric. Mat., 47, No. 1, 1–21 (1998).MathSciNetGoogle Scholar
  11. 11.
    J. Tits, “Free subgroups in linear groups,” J. Algebra, 20, No. 2, 250–270 (1972).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    G. Karpilovsky, Field Theory, Marcel Dekker, New York (1988).zbMATHGoogle Scholar
  13. 13.
    B. A. F. Wehrfritz, Infinite Linear Groups, Springer, Berlin (1973).zbMATHGoogle Scholar
  14. 14.
    V. V. Belyaev, “Locally finite groups with Chernikov Sylow p-subgroups,” Alg. Logika, 20, No. 6, 605–619 (1981).zbMATHMathSciNetGoogle Scholar
  15. 15.
    O. H. Kegel and B. A. F. Wehrfritz, Locally Finite Groups, North-Holland, Amsterdam (1973).zbMATHGoogle Scholar
  16. 16.
    L. Fuchs, Infinite Abelian Groups [Russian translation], Vol. 1, Mir, Moscow (1974).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • N. N. Semko
    • 1
  • V. A. Chupordya
    • 2
  1. 1.Ukrainian National University of Tax ServiceIrpen
  2. 2.Dnepropetrovsk National UniversityDnepropetrovsk

Personalised recommendations