Advertisement

Ukrainian Mathematical Journal

, Volume 59, Issue 8, pp 1184–1191 | Cite as

On the boundary behavior of imbeddings of metric spaces into a Euclidean space

  • R. R. Salimov
Article

Abstract

We investigate the boundary behavior of so-called Q-homeomorphisms with respect to a measure in some metric spaces. We formulate a series of conditions for the function Q(x) and the boundary of the domain under which any Q-homeomorphism with respect to a measure admits a continuous extension to a boundary point.

Keywords

Quasiconformal Mapping Boundary Behavior Admissible Function Weakly Planar Nonnegative Ricci Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Astala, T. Iwaniec, P. Koskela, and G. Martin, “Mappings of BMO-bounded distortion,” Math. Ann., 317, 703–726 (2000).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    F. W. Gehring and T. Iwaniec, “The limit of mappings with finite distortion,” Ann. Acad, Sci. Fenn. Math., 23, 253–264 (1999).MathSciNetGoogle Scholar
  3. 3.
    J. Heinonen and P. Koskela, “Sobolev mappings with integrable dilations,” Arch. Ration. Mech. Anal., 125, 81–97 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    I. Holopainen and P. Pankka, “Mappings of finite distortion: global homeomorphism theorem,” Ann. Acad. Sci. Fenn. Math., 29, No. 1, 59–80 (2004).zbMATHMathSciNetGoogle Scholar
  5. 5.
    T. Iwaniec and G. Martin, Geometrical Function Theory and Non-Linear Analysis, Clarendon Press, Oxford (2001).Google Scholar
  6. 6.
    T. Iwaniec, P. Koskela, and J. Onninen, “Mappings of finite distortion: monotonicity and continuity,” Invent. Math., 144, No. 3, 507–531 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    T. Iwaniec, P. Koskela, and J. Onninen, “Mappings of finite distortion: compactness,” Ann. Acad. Sci. Fenn. Math., 27, No. 2, 349–417 (2002).MathSciNetGoogle Scholar
  8. 8.
    J. J. Manfredi and E. Villamor, “An extension of Reshetnyak’s theorem,” Indiana Univ. Math. J., 47, No. 3, 1131–1145 (1998).zbMATHMathSciNetGoogle Scholar
  9. 9.
    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings with finite length distortion,” J. Anal. Math., 93, 215–236 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “On Q-homeomorphisms,” Ann. Acad. Sci. Fenn. Math., 30, 49–69 (2005).zbMATHMathSciNetGoogle Scholar
  11. 11.
    A. A. Ignat’ev and V. I. Ryazanov, “Finite mean oscillation in the theory of mappings,” Ukr. Mat. Vestn., 2, No. 3, 395–417 (2005).MathSciNetzbMATHGoogle Scholar
  12. 12.
    J. Heinonen and P. Koskela, “Quasiconformal maps in metric spaces with controlled geometry,” Acta Math., 181, 1–61 (1998).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    O. Martio, “Modern tools in the theory of quasiconformal mappings,” Texts Math., Ser. B, 27, 1–43 (2000).MathSciNetGoogle Scholar
  14. 14.
    J. Heinonen, Lectures on Analysis on Metric Spaces, Springer, New York (2001).zbMATHGoogle Scholar
  15. 15.
    J. Vaisala, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin (1971).Google Scholar
  16. 16.
    B. Fuglede, “Extremal length and functional completion,” Acta Math., 908, 171–219 (1957).CrossRefMathSciNetGoogle Scholar
  17. 17.
    G. T. Whyburn, Analytic Topology, American Mathematical Society, Phode Island (1942).zbMATHGoogle Scholar
  18. 18.
    P. Buser, “A note on the isoperimetric constant,” Ann. Sci. Ecole Norm Supér., 4, No. 15, 213–230 (1982).MathSciNetGoogle Scholar
  19. 19.
    I. Chavel, Riemannian Geometry—a Modern Introduction, Cambridge University, Cambridge (1993).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • R. R. Salimov
    • 1
  1. 1.Institute of Applied Mathematics and MechanicsUkrainian National Academy of SciencesDonetsk

Personalised recommendations