Advertisement

Ukrainian Mathematical Journal

, Volume 59, Issue 8, pp 1148–1154 | Cite as

Constancy of upper-continuous two-valued mappings into the Sorgenfrey line

  • V. K. Maslyuchenko
  • O. H. Fotii
Article
  • 28 Downloads

Abstract

By using the Sierpiński continuum theorem, we prove that every upper-continuous two-valued mapping of a linearly connected space (or even a c-connected space, i.e., a space in which any two points can be connected by a continuum) into the Sorgenfrey line is necessarily constant.

Keywords

Topological Space Compact Subset Topological Structure Neighborhood Versus Multivalued Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. H. Kozhukar and V. K. Maslyuchenko, “On the Debs theorem on multivalued mappings,” Nauk. Visn. Cherniv. Univ., Mat., Issue 191–192, 61–66 (2004).Google Scholar
  2. 2.
    V. K. Maslyuchenko and O. H. Fotii, “Lower-continuous mappings with values in the Sorgenfrey line,” Mat. Stud., 24, No. 2, 203–206 (2005).zbMATHMathSciNetGoogle Scholar
  3. 3.
    V. K. Maslyuchenko and O. H. Fotii, “Upper-continuous mappings with values in the Sorgenfrey line,” Nauk. Visn. Cherniv. Univ., Mat., Issue 269, 68–72 (2005).Google Scholar
  4. 4.
    P. S. Kenderov, “Multivalued mappings and their properties similar to continuity,” Usp. Mat. Nauk, 35, No. 3, 194–196 (1980).MathSciNetGoogle Scholar
  5. 5.
    G. Debs, “Points de continuité d’une function séparément continue,” Proc. Amer. Math. Soc., 97, No. 1, 167–176 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Engelking, General Topology [Russian translation], Mir, Moscow (1986).Google Scholar
  7. 7.
    V. K. Maslyuchenko and O. H. Fotii, “Upper-continuous mappings with values in the Sorgenfrey line,” in: Abstracts of the International Conference “Analysis and Related Problems” [in Ukrainian], Lviv (2005), pp. 67–68.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. K. Maslyuchenko
    • 1
  • O. H. Fotii
    • 1
  1. 1.Chernivtsi National UniversityChernivtsi

Personalised recommendations