Advertisement

Ukrainian Mathematical Journal

, Volume 59, Issue 4, pp 633–638 | Cite as

Middle-sectioned simplices in a four-dimensional affine space

  • Yu. S. Reznikova
Article
  • 16 Downloads

Abstract

We present a general geometric description and Euler-Poincaré characteristics of middle-sectioned simplices in a four-dimensional affine space. We demonstrate the relationship between similar geometric objects and four-dimensional analogs of the triangular Sierpinski napkin.

Keywords

Similarity Coefficient Convex Polyhedron Affine Space Sierpinski Carpet Multidimensional Analog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Berger, Géométrie [Russian translation], Vol. 1, Mir, Moscow (1984).Google Scholar
  2. 2.
    H. S. M. Coxeter, Introduction to Geometry, Wiley, New York (1961).zbMATHGoogle Scholar
  3. 3.
    L. A. Lyusternik, Convex Figures and Polyhedrons [in Russian], Gostekhteorizdat, Moscow (1956).Google Scholar
  4. 4.
    J. Feder, Fractals, Plenum, New York (1988).zbMATHGoogle Scholar
  5. 5.
    A. D. Aleksandrov, Convex Polyhedrons [in Russian], Gostekhteorizdat, Moscow (1950).Google Scholar
  6. 6.
    M. V. Prats’ovytyi, Fractal Approach to the Investigation of Singular Distributions [in Ukrainian], National Pedagogic University, Kyiv (1998).Google Scholar
  7. 7.
    Yu. S. Reznikova, “Analytic-geometric description of the Sierpinski carpet and its three-dimensional analog in terms of Galitsyn modulus,” Nauk. Chasopys Drahomanov Nats. Ped. Univ., Ser. 1, Fiz.-Mat. Nauky, No. 5, 207–216 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Yu. S. Reznikova
    • 1
  1. 1.Scientific Research Institute of Labor and Employment, Ministry of Labor and Social Policy of UkraineUkrainian National Academy of SciencesUkraine

Personalised recommendations